

高分子境界膜のX線反射率計測

伊藤伸太郎 名古屋大学 大学院工学研究科, JST さきがけ

キーワード:潤滑,トライボロジー,潤滑油,高分子,ポリマーブラシ

1. 背景と研究目的

機械システムの省エネルギーや耐久性向上に寄与する潤滑技術の発展は、持続可能な社会の実現に向けて必要不可欠である。特に世界的に増え続ける自動車の潤滑技術には、潤滑油の性能向上やしゅう動面の表面処理技術の発展がキーとなるり、先行研究において、固体表面に形成された高分子の境界膜が、過酷な摩擦条件において高い潤滑性をもつことが報告された ²⁻⁴⁾. 分子構造をデザインして高分子境界膜の潤滑性能を設計できれば、画期的な潤滑技術となるだけでなく、高分子の多様な物性を活かして高機能な潤滑面の創成が期待される。ただし、高分子境界膜の厚さは 1 μm 以下(ナノ厚さ)であり、そのような薄膜が潤滑性を発現するメカニズムは未解明である。そこで我々はメカニズムの解明を目標とし、X線反射率(XRR)計測により高分子境界膜の膜構造の解析を進めている。先行研究において、高分子境界膜と高分子を微量に添加した高分子溶液を潤滑液として用いた場合に、摩擦係数が大幅に低下することが報告された。これまでに XRR を用いて膜の層構造を解析することにより、潤滑液中の高分子が高分子境界膜上に吸着膜が形成することが確認された。本研究では、BL8S1 の XRR 測定系に搭載できる摩擦試験機を開発し、摩擦回数による吸着層構造変化の観測を目的とした。

2. 実験内容

高分子境界膜として MPC ポリマーブラシ膜を用いた.シリコンウェハ上にパリレン薄膜を蒸着したものを基板とし、表面開始グラフト重合により MPC ポリマーブラシ膜を作成した. MPC ポリマーブラシ膜は水中で使用された際に、水和してゲル状となることにより低摩擦を発現することが知られている. 潤滑液として水に MPC ポリマーを 0.5 wt%添加したものを用意した.ブラシ膜を成膜した基板を潤滑液に 12 時間浸漬させ、液中から取り出したのちに潤滑液を除去して乾燥させたものを XRR 測定試料として用意した.しゅう動時には境界膜を水で膨潤させる必要がある.そこで浮遊ポリマーを含まない純水を滴下して摩擦試験を行い、摩擦直後に乾燥空気をしゅう動面に吹きかけて水を蒸発させ、XRR 測定を実施した.

3. 結果および考察

しゅう動回数に伴う膜厚、密度の変化を Fig. 1 に示す. これまでの研究結果から吸着層が形成されたブラシ膜は密度の異なる 3 層構造で近似できることが分かっている. しゅう動によって、3 層目の膜厚および密度が減少したが、摩擦係数は、約 0.0039 を維持した. ポリマーブラシ膜のみの場合は 100 回以上のしゅう動において、2 層目が消失し摩擦係数は約 0.0056 であった. これらの結果から、浮遊ポリマーによって形成された 2 層目が存在すること、および 3 層目の消失が低摩擦化に寄与している可能性が考えられる.

Fig. 1 Changes with number of sliding. (a) Thickness, (b) density.

4. 参考文献

- 1) K. Holmberg, P. Andersson, A. Erdemir, *Tribology International*, 47 (2012), pp. 221-234.
- 2) J. Fan, M. Muller, T. Stohr, H. A. Spikes, *Tribology Letters*, 28 (2007), pp. 287-298.
- 3) 田川, 村木, トライボロジスト, 60 (2015), pp. 342-348.
- 4) K. Ishihara, *Polymer Journal*, 47, (2015), pp.585-597