

Ba0-Si0₂結晶化ガラスへのLi20添加が ネットワーク構造に与える影響の解明

梶原 貴人 ^{1,3}, 西堀 麻衣子 ^{1,2}, 波多 聰 ¹ 1九州大学, 2東北大学, 3AGC 株式会社

キーワード: BaO-SiO₂ ガラス, Li₂O-BaO-SiO₂ ガラス, 結晶化ガラス, Si K-edge XANES

1. 背景と研究目的

我々は BaO-SiO₂ 系ガラスへ第三成分の微量添加の影響に着目し、Li₂O-BaO-SiO₂ ガラスの結晶化挙動について検討してきた。これまでに、0.2mol%とほんのわずかな Li₂O の添加により、BaO-SiO₂ 系の結晶相の相変態を促進する効果があることが明らかとなっている。^[1] しかしながら、Li₂O 量の違いによるガラス構造の違いや結晶相生成時の微細構造の変化は十分に理解されておらず、Li₂O の添加効果を明らかにする上で課題となっている。そこで本研究では、BaO-SiO₂ ガラスおよび Li₂O-BaO-SiO₂ ガラスを対象に、Si K 吸収端 XANES スペクトルから SiO₂ のネットワーク構造について検討した。

2. 実験内容

表面を鏡面した xLi₂O-(30-x)BaO-70SiO₂[mol%] (x = 0, 0.2, 0.5, 1, 2, 3, 5)組成のガラスに対し、室温、He 雰囲気下での部分蛍光収量法にて Si K 吸収端 XANES 測定を行った。得られた XANES スペクトルは、Gaussian-Lorentzian 関数と arctan 関数でピークフィッティングを行った。

3. 結果および考察

Fig. 1(a)に 30BaO-70SiO₂ [mol%]組成のガラス の Si K 端の XANES スペクトルと Gaussian-Lorentzian 関数および arctan 関数を用い てピークフィッティングを行った結果を示す。測 定スペクトルは、1840 eV から 1870 eV の範囲に おいて、Peak 1 から Peak 6 までの 6 つの Gaussian-Lorentzian 関数と Peak 7の1つの arctan 関数でフィッティングできることを確認した。同 様に、その他のガラスの測定スペクトルに対して もフィッティングを実施した。Fig. 1(b)に Li₂O 量 と white line に関連する Peak 1 から Peak 3 の面積 比率との関係を示す。XANES スペクトルは Li₂O 量の違いでわずかに変化しており、ピークフィッ ティングから Li₂O 量の増加にともない Peak 1の 比率が減り、Peak 3 の比率が増加する傾向にある ことがわかった。これは、Li₂Oの添加に伴うSiO₂ ネットワーク構造の違いを反映していると考えら れる。

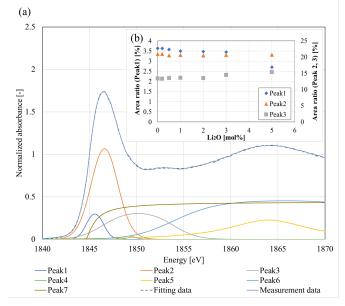


Fig. 1 (a) 30BaO-70SiO₂ [mol%]組成のガラスの XANES スペクトルとピークフィッティング結果. (b) Li₂O 量と Peak 1 から Peak 3 の面積比との関係.

4. 参考文献

1. T. Kajihara *et al.*: "Effect of Li₂O on crystallization behavior in BaO-SiO₂ glass", (Glass Meeting 2020, 2020.12.9 (On Web), https://www.ceramic.or.jp/gm2020/).