

AichiSR

光ビームプラットフォーム X線光電子分光ラウンドロビン実験(2020-1)

神岡 武文¹, 安野 聡², 陰地 宏^{1,3}, 柴田 佳孝¹, 横溝 臣智⁴, 上原 康¹, 廣沢 一郎², 渡辺 義夫¹ ¹科学技術交流財団,²高輝度光科学研究センター, ³名古屋大学,⁴コベルコ科研

キーワード:光電子分光, HAXPES, 有効減衰長さ, 相対感度係数, 光ビームプラットフォーム

1. 背景と研究目的

硬X線光電子分光(hard X-ray photoelectron sepectroscopy; HAXPES)は、通常の軟X線を用いる実験 室系XPSと比較して分析深さが大きいため、多層構造を有する半導体デバイスや、二次電池・触媒材料 の評価に広く利用されている。HAXPESをより実用的な分析手法にするためには、定量分析に必要な相 対感度係数のデータベース構築、および、有効減衰長さの実測データ拡充、が課題となっている。これ に関し、光ビームプラットフォーム事業では、AichiSR(BL6N1)とSPring-8(BL46XU)が連携し、3– 10 keVの励起X線エネルギーを用いた標準試料のHAXPES測定実験を進めている[1-5]。酸素を含む化 合物を主に測定することによりOIsを基準とした相対感度係数を求めること、および、各種薄膜試料の 測定から有効減衰長さを実測することが目標である。相対感度係数に関するこれまでの取り組みでは、 4つの励起エネルギー(3.00, 5.95, 7.94, 9.92 keV)ごとの種々の内殻準位に対する相対感度係数デー タを公開した[6]。AichiSRが担当する3 keV については20元素、28 準位に対するデータを公開してい るが、SPring-8 での実験で求めた他の励起エネルギーと比較してデータが少ない状況であったため、今 回は3 keV についての相対感度係数データの充実を目的として実験を行った。一方、有効減衰長さに関 しては、SPring-8 に先行して AichiSR でのデータ取得が進んでおり、これまで TiO2 膜や Pt 膜を対象と した測定実験を行っている。今回はSiO2 膜における有効減衰長さデータの蓄積を目的とした。詳細な解 析は今後進めるが、ここでは得られたスペクトルデータの一例を報告する。

2. 実験内容

今回測定した試料を Table 1 にまとめた。相対感度係数解析用の試料は Sc₂O₃ / KB, PdO / KB, B₂O₃ / KB, NaCl, InSb である。前回までの報告[2-5]のように,酸化物粉末状の試料は帯電抑制のためにケッ チェンブラック(KB)と混合し,アルミパンに投入してハンドプレスで固めた。有効減衰長さ解析用の 試料は Si 基板を用いた薄膜積層構造(SiO₂ / InGaZnO / Si)になっている。InGaZnO 膜厚を 200 nm で固 定し,その上に堆積する SiO₂ 膜の厚さを 0 – 200 nm まで変えた試料を準備した。

試料	測定領域	試料形状, 備考
Au	Au 4f	板状 (較正標準)
SiO ₂ /InGaZnO/Si	wide, In 3p, In 3d, Ga 2s, Ga 2p, Ga 3s, Ga 3d, Zn	SiO ₂ 膜厚:2.5,5.0,7.5,200 nm,
	2s, Zn 2p, Zn 3s, O 1s, Si 1s, Si 2p	InGaZnO 膜厚: 200 nm
InGaZnO / Si	wide, In 3d	InGaZnO 膜厚: 200 nm
Sc_2O_3 / KB	wide, Sc 2s, Sc 2p, O 1s	粉末, アルミパンで成形
PdO / KB	wide, Pd 3d, O 1s	粉末, アルミパンで成形
B_2O_3/KB	wide, B 1s, O 1s	粉末,アルミパンで成形
NaCl	wide, Na 1s, Na 2s, Na 2p, Cl 1s, Cl 2s, Cl 2p	板状
InSb	wide, In 3d, Sb 3d	板状

Table 1. 測定試料リスト (※ KB を付記した試料は試料帯電対策としてケッチェンブラックを混合)

励起光としては,蓄積リングの常伝導偏向電磁石から放射される白色光を,Ni コート Si ベンドシリ

ンドリカルミラーで集光と高次光除去を行った後,Si(111)の二結晶分光器で単色化した X 線を用いた。 X 線エネルギーは 3 keV とした。X 線の試料への入射角を 55°(直入射が 0°),光電子の脱出角(take-off angle; TOA)を 90°(直出射)とした。光電子の検出には静電半球型電子分光器(SPECS PHOIBOS 150 CCD)を用いた。分析器のパスエネルギーを wide 測定では 50 eV,各内殻準位の測定では 20 eV とし, 分析器のスリット条件は 7 mm × 25 mm curved とした。測定は室温で行い,測定中の真空度は 10⁻⁷ Pa 台 であった。必要に応じ,測定中における試料帯電の緩和のため、中和銃(SPECS FG 10/40)を用いた。

3. 結果および考察

結果の一例として、有効減衰長さを見積もるために測定した SiO₂ / InGaZnO / Si 試料の Zn 2p_{3/2},およ び Ga 2p_{3/2}のスペクトルをそれぞれ Fig. 1 に示す。上部被膜である SiO₂の膜厚をパラメータとした 4本 のスペクトルを重ねて表示し、バックグラウンド処理はしていない。いずれの内殻準位スペクトルにお いても、SiO₂ 膜厚が 0 nm (w/o SiO₂) から 7.5 nm まで増加するのに伴い、ピーク強度が減衰しているの がわかる。なお、膜厚 200 nm では InGaZnO からの信号は検出されなかった。バックグラウンドを差し 引いただけの粗い見積もりでは、スペクトル面積は SiO₂ 膜厚の増加に伴い指数関数的に減少する傾向 を示している。今後は、前回までに測定した他の上部被膜材料 (TiO₂, Pt)の試料とともに、overlayer film 法による有効減衰長さの解析を進める予定である。

Fig. 1 SiO₂/InGaZnO/Si 試料における(a) Ga 2p_{3/2}, (b) Zn 2p_{3/2}スペクトルの SiO₂ 膜厚依存性

なお,粉末試料調製に関して新たな方法を今回検討した。先述のように,粉末状試料はアルミパンに 投入してハンドプレスにより成形し,ホルダに固定してトランスファーロッドで分析室まで搬送する。 しかし,この搬送中にホルダが傾いたり小さな振動が生じた場合に,試料の種類によってはアルミパン から成形試料が剥がれ落ちることが頻発した。そこで,少量のカーボンテープを予めアルミパンの底部 に貼り付けた後に粉末状試料を投入し,テープごとプレス成形することを試みたところ,剥がれ問題が 生じなくなった。これによる測定結果への影響は定性的にはみられないようであり,粉末試料作製の確 実性を向上させる有効な手法である。

4. 参考文献

- 1. AichiSR 2016 年度公共等利用成果報告書 201606007.
- 2. AichiSR 2017 年度公共等利用成果報告書 201703013, 201706108.
- 3. 平成 30 年度 SPring-8 放射光施設横断産業利用課題・一般課題(産業分野)実施報告書 2018A1965.
- 4. AichiSR 2018 年度公共等利用成果報告書 201803040, 201806087.
- 5. AichiSR 2019 年度公共等利用成果報告書 201902011, 201906030.
- 6. Surf Interface Anal. 2020; 1-6. (https://doi.org/10.1002/sia.6855).