

XAFS 分析を用いた Fe および Mn 酸化細菌により生成した Fe, Mn 系沈殿物の構造解析

AichiSR

所 千晴¹, 西村 拓朗², 宮田 直幸³, 淵田 茂司¹, 加藤 達也¹, 澤村 幸宏¹, 門倉 正和¹, 田嶋 翔太¹ 1 早稲田大学, 2 株式会社ナガオカ, 3 秋田県立大学

キーワード:二酸化マンガン,酸化マンガン,四三酸化マンガン,不均化反応

1. 測定実施日

2019年8月29日	BL6N1	(2 シフト)
2019年9月11日	BL5S1	(2 シフト)
2019年10月18日	BL6N1	(2 シフト)
2019年10月24日	BL5S1	(2 シフト)

2. 概要

本研究はX線吸収微細構造(X-ray absorption fine structure; XAFS)分析を用いた廃水処理後のMn 沈殿種の同定を目的とした。XAFS 分析は、ビーカーおよびカラムを用いた Mn 除去実験後に得られた殿物を 凍結乾燥させた試料を対象とした。ビーカー実験後の試料については Mn 濃度が十分高いため透過法で、 カラム試験後の試料については試料表面から数十 µm 程度を分析可能な蛍光法で、それぞれ実施した。 得られた実験結果から、溶液中の Mn の反応経路および Mn 沈殿種を同定した。

3. 背景と研究目的

マンガン(Mn; Manganese)の(水)酸化物として知られる二酸化マンガン(IV)(MnO₂),酸化マンガン (III)(MnOOH),四三酸化マンガン(II,III)(Mn₃O₄)は、中性領域での処理が困難であるカドミウムなどの有 害元素を除去可能な吸着材として注目されている。しかし、Mn は溶液中で Mn²⁺, Mn³⁺, Mn⁴⁺など複数 の価数を取り、式(1) - (6)で表される酸化反応や不均化反応など、複雑な反応経路によって多様な沈殿を 生じることが報告されている(Fig. 1)[1]。これらの Mn (水)酸化物は、沈殿種ごとに有害元素除去能が異 なるため、その除去能力を定量するためには、生成する Mn の沈殿種を同定し、生成量をある程度定量 的に把握することが重要である。しかし、坑廃水処理後に得られる Mn 沈殿は結晶性が低く、かつ含有 量が低いため、XRD などの分析では Mn 沈殿種の同定は困難であることが多い。そこで、本研究では、 低結晶性、かつ含有量の小さい物質に対して適用可能な XAFS 分析を用いてビーカー、およびカラムを 用いた Mn 除去後に得られる Mn 沈殿種の同定を目的として実施した。

$4Mn^{2+} + 6H_2O + O_2 \rightarrow 4MnOOH + 8H^+$	(1)
$6Mn^{2+} + 6H_2O + O_2 \rightarrow 2Mn_3O_4 + 12H^+$	(2)
$4Mn_3O_4 + 6H_2O + O_2 \rightarrow 12MnOOH$	(3)
$4MnOOH + O_2 \rightarrow 4MnO_2 + 2H_2O$	(4)
$MnO_2 + Mn^{2+} + 2H_2O \rightarrow 2MnOOH + 2H^+$	(5)
$2MnOOH + 2H^+ \rightarrow MnO_2 + Mn^{2+} + 2H_2O$	(6)

Fig. 1 Conceptual diagram of manganese oxidation and disproportionation reactions in non-biological systems

4. 実験内容

ビーカーを用いた Mn 除去実験は、模擬 Mn²⁺溶液を用いて実施した。初期 Mn²⁺濃度を 1.0 mmol/dm³ とし、pH を 1 mol/dm³ 水酸化カリウム(KOH) を用いて調整した。また、イオン強度は 1 mol/dm³ 硝酸 (HNO₃)および 1 mol/dm³ KOH を用いて 0.05 mol/dm³に調整した。実験中の室温は常に 25 °C に調整した。 実験では、まず 500 mdm³ メスフラスコ内に所定の Mn²⁺濃度、およびイオン強度となるように Mn²⁺と 1 mol/dm³HNO₃ および 1 mol/dm³ KOH を入れ、純水で定容した。これを 500 mdm³ ビーカーに移し、マグ ネティックスターラーで撹拌しながら pH 8 - 10 の範囲で調整した。60 分反応させた後、所定の時間に おいて孔径 0.1 µm のメンブレンフィルターを用いてろ過した。ろ過後に得られた沈殿を、45 °Cにて 24 時間凍結乾燥させ、XAFS 分析に供した。なお、XAFS 分析は Mn-K 端において透過法で行った。

カラムの概略図を Fig. 2 に示す。カラムを用いた Mn 除去実験は、実在の坑廃水を用いて連続通水した。カラム内にはあらかじめ Mn 沈殿物を被覆させたろ過砂を充填した。実験後、カラムの上部・中部・ 下部から採取したろ過砂を XAFS 分析に供し、表面に被覆した Mn 沈殿物の同定を試みた。なお、XAFS 分析は Mn-K 端から多素子シリコンドリフト検出器(SDD; Silicon Draft Detector)を用いた蛍光法で行った。

Fig. 2 Schematic of column experiments

5. 結果および考察

Fig. 3 に pH 8 - 10 においてビーカーを用いた Mn 実験除去後に得られた沈殿の XAFS スペクトルを示 す。さらに、Table 1 に X 線吸収端近傍構造(XANES; X-ray absorption near-edge structure)解析の結果得ら れた、沈殿中の MnOOH と Mn₃O₄の割合を示す。なお、Fig. 3 に参照試料として MnOOH と Mn₃O₄のス ペクトル、XANES 解析から得られたスペクトルを合わせて示す。XANES 解析の結果から、pH 8 - 10 の 範囲においては、pH に関わらず Mn は主に Mn₃O₄ として沈殿することが確認された。

based on x-ray absorption hear-edge structure analysis [%]				
	MnOOH	Mn ₃ O ₄		
рН 8	16	84		
pH 9	12	88		
pH 10	21	79		

Fig. 3 Mn K-edge x-ray absorption fine structure spectra of precipitation obtained from Mn removal experiments at pH 8, 9 and 10.

また、Fig. 3 にカラムの上部・中部・下部から採取したろ過砂の XAFS スペクトルを示す。既往研究 において、Mn 価数と XAFS スペクトルの第一ピーク位置に相関があることが報告されている[2]。本研 究でも同様の手法を用いてそれぞれのMn 価数、Mn₃O₄、MnOOH およびMnO₂の割合を算出した(Table 2)。 その結果、高さに関わらず Mn₃O₄ が約 30 %、MnOOH が約 10 %、MnO₂ が約 60 %ろ過砂に被覆してい ることが確認された。また、Table 1 に示す通り、反応初期は、ほぼ全て Mn₃O₄ として存在していたと 考えられるが、実験後は MnOOH や MnO₂ に変化することから、式(1) - (6)で表される酸化/不均化反応が 生じたことが確認された。

Table 2	The ratio of Mn valence, Mn ₃ O ₄ , MnOOH and MnO ₂ in the sand soil
	obtained from Mn removal experiments using column

	Mn valence [-]	Mn ₃ O ₄	MnOOH	MnO ₂	
Upper	3.18	28.8	10.3	61.0	
Middle	3.26	29.5	1.5	69.0	
Under	3.20	28.8	10.3	61.0	

Fig. 3 Mn K-edge x-ray absorption fine structure spectra of sand soil obtained from upper, middle and under the column.

6. まとめと今後の課題

本研究で実施した XAFS 分析によって、ビーカー、およびカラムを用いた Mn 除去実験後に得られる 殿物中の Mn 沈殿種の同定を試みた。その結果、ビーカーを用いた Mn 除去実験では、反応時間 1 時間 でほぼ全量が Mn₃O₄ として沈殿することが確認された。一方で、カラムを用いた Mn 除去実験では、 MnO₂や MnOOH に変化していた。すなわち、式(1) - (6)で表される Mn の不均化反応によって、Mn₃O₄ から MnO₂や MnOOH に変化することが確認された。

本研究で生成が確認された Mn₃O₄, MnOOH, MnO₂は, それぞれ異なる有害元素の除去能力を有しているが, その除去能力や除去機構は明らかにされていない。今後は, これらの Mn 沈殿物の除去能の定量, 除去機構を詳細に明らかにすることが今後の課題である。

5. 参考文献

- Diem, D., Stumm, W. (1984) Is dissolved Mn²⁺ being oxidized by O₂ in absence of Mn-bacteria or surface catalysts?. Geochim. Cosmochim., 48, 1571 - 1573.
- Ressler, T., Wong, J., Roos, J., Smith I. L. (2000). Quantitative speciation of Mn-bearing particulates emitted from autos buring (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy. Environ. Sci. Technol. 34, 950 - 958.