

複雑構造合金の構造安定機構の解明に向けてV ― 内殻準位スペクトル測定 ―

曽田一雄^{1,2,3},伊藤圭哉¹,池戸航¹,加藤政彦¹,陰地宏^{2,3}
¹名古屋大学大学院工学研究科,²名古屋大学シンクロトロン光研究センター,
³あいちシンクロトロン光センター

キーワード:硬X線光電子分光、Au 4f 内殻光電子スペクトル、Al 1s 内殻光電子スペクトル

1. 背景と研究目的

Al 基 2 次元準結晶は、準周期 2 次元原子配列が 1 軸方向に周期的に配列した構造をもつ。この構造の 発現には、電子系が寄与すると言われている^[1]が、未だよく分かっていない。我々は、Aichi-SR BL1N2 の稼働にあたり、これまで例の少ない Al K 吸収端X線分光 Al K-XAS によって Al 周りの局所原子配列 や伝導帯電子構造を調べている^[2]。本研究では、この準結晶の Al 1s 内殻準位の束縛エネルギーを決定 するとともに、SPring-8 BL47XU での硬X線光電子分光 HAXPES 測定と比較を試みた。

2. 実験内容

XAS 測定に用いた 2 次元準結晶 Al₇₂Co₁₂Ni₁₆、Al₇₂Co₈Ni₂₀ と参照用 Al 箔について Al 1s 内殻準位スペクトルおよび光子エネルギー較正用 Au 箔の Au 4f 内殻準位スペクトルを室温で測定した。

3. 結果および考察

Fig.1 および2 に参照用 Au 4f_{7/2}および参照用 Al 箔の Al 1s スペクトルを比較した。スペクトルのエネルギー 間隔 ΔE 、エネルギー分析器の透過エネルギー E_{pass} 、電 子入射レンズの受口角 α を図中に示す。BL6N1 で測定 に用いた光子エネルギーhvは、3 keV であり、BL47XU の 8 keV と比べて Au 4f 殻の光イオン化断面積が約 40 倍大きい^[3]。これらを考慮すると、分析器のサイズや 配置の違いもあるものの、信号強度の相違には、励起 光子フラックスの寄与が最も大きいと思われる。

Al 1s スペクトルは、高束縛エネルギーの表面酸化層 と低束縛エネルギーの内部金属の2成分から成る。2 層モデル^[4]で取り扱うと、2成分の強度比から3keVに おける脱出深さが8keVと比べて約1/2と評価できる。

なお、測定の第1 scan 時にスペクトルが高運動エネ ルギー側にシフトしているように見えた。今後、scan 毎のスペクトル測定などで詳細に検討する。

4. 参考文献

- 1. U. Mizutani and H. Sato, Crystals 7 (2017) 9.
- 2. K. Soda et al., Activity Report (2018) 201802094, 201803049, 201803111, and 201804073.
- 3. J. J. Yeh and I. Lindau, Atomic Data and Nucl. Data Tables 32 (1985) 1.
- 4. K. Soda et al., J. Alloys Comp. 643 (2015) 195.

