

鉄リン酸ガラスの異常散乱測定

梶並 昭彦¹,渡部 創² 1神戸大学,2日本原子力研究開発機構

キーワード:異常分散散乱,鉄リン酸ガラス,ジルコニウム周辺構造,

1. 背景と研究目的

2018P0114(2018年8月22日 BL5S2)にて鉄リン酸ガラスに含有されるジルコニウム(Zr)の周辺 構造を明らかにするために、Zrに関する異常散乱測定を行ったが、Zr濃度が小さく、統計誤差のため に周辺構造を明らかにすることはできなかった。そこで、今回は、より長時間強度測定することにより、 統計精度を上げて、Zrの周辺構造について検討を行った。

2. 実験内容

2018P0114 と同じ Zr 含有鉄リン酸ガラス試料を内径 0.3 mm 厚み 0.01 mmのリンデマン製ガラス毛細管 に充填、封入した。PILATUS4 連装システムにより、X 線エネルギー 17.978 keV (以後 E₁ と示す。) と 17.498 keV (以後 E₂ と示す。) でその試料の透過 X 線回折測定を行った。2 θ =0.03°から 132.52°の範 囲を 各角度で 2000 秒以上積算(前回の 2 倍の時間)を行い、E₁および E₂にて回折強度(それぞれ、 Is (E₁, θ)、Is(E₂, θ))を求めた。空のガラス毛細管の X 線回折強度(それぞれ、Ic(E₁, θ)、Ic(E₂, θ))は 2018P0114 のデータを利用した。2018P0114 と同様の方法で試料強度 I(E₁,Q)および I(E₂,Q)を求めた。 (Q = 4 π sin θ / λ 、 λ =12.4 (keV) /E_n: 入射 X 線波長(Å), n=1,2) 高角度法¹⁾により、測定強度を電子 単位に規格化し、換算強度(i(E₁,Q)および i(E₂,Q))を求めた。換算強度 i(E_n,Q)をフーリエ変換し、E₁ および E₂ での動径分布関数 D(r) (=4 π r² ρ E_n(r) (n=1,2))を求めた。

3. 結果および考察

Fig. 1 には、電子単位に規格化した強度 I(Q,E₁)、I(Q,E₂)およびその差分 Δ I(Q) (=I(Q,E₁) - I(Q,E₂)) を示した。I(Q,E₁)、I(Q,E₂)はほとんど一致しており、明確な差が見られなかった。

Fig.2 には、 E_1 および E_2 での動径分布関数 $D_1(r)$ 、 $D_2(r)$ をそれぞれ示した。いずれにも 1.6Å付近に P-O 相関に起因するピークが見られ、 2Å付近には Fe-O 相関と Zr-O の相関に起因するピークが見ら れた。今回、積算時間を 2 倍にし、統計精度を向上させたが、2Å付近に有意な差が見られなかった。 その原因と、Zr 周辺構造の検討を現在行っている。

4. 参考文献 1. H. Ohno, K. Igarashi, N. Umesaki, and K. Furukawa, "X-Ray Diffraction Analysis of Ionic Liquids", Trans Tech Publications, Zurich, pp.6 (1994).