実験番号:2017a0013(2シフト)

清酒酵母へのX線照射実験

三井俊 、山本晃司 あいち産業科学技術総合センター

キーワード:突然変異,清酒酵, X線,尿素

1. 背景と研究目的

有用微生物の育種改良法である突然変異処理法の変異原としては紫外線や薬剤が挙げられるが、近年では新たな変異原が注目されている。その一つとしてシンクロトロン光があり、植物育種への活用が検討されているが、微生物育種への活用事例は少ない。シンクロトロン光は変異誘発率等これまでの変異原とは異なった効果が期待される。一方、愛知県は清酒、味噌、醤油等の醸造業が盛んな地域であり、あいち産業科学技術総合センターでは様々な醸造微生物の育種開発に取り組んできた経緯がある。そこで本実験では当センター保有の醸造微生物を対象にシンクロトロン光の微生物育種分野への活用の可能性を検討する。

具体的には、清酒の輸出対応を考慮し、既存の愛知県酵母を親株として、シンクロトロン光を活用した変異処理により、カルバミン酸エチルの前駆物質である尿素の非生産性酵母を育種することとした。

2. 実験内容

CAO (カナバニン、アルギニン、オルニチン含有) 培地上で生育可能な酵母は尿素非生産性である可能性が高い事が報告されている。本実験では、変異原としてシンクロトロン光を用い、酵母に変異処理を行った後、CAO 培地上の生育株を変異株として釣菌する事で尿素非生産酵母の一次選抜とした。

愛知県酵母 $\mathrm{FIA1}$ 株、モッコウバラ酵母 $\mathrm{M1} ext{-}12$ 株($\mathrm{M1}$ 株の変異株)について、麹エキス培地にて 2

日間培養後、洗浄し、ポリプロピレン製容器に集菌したものを照射 試料とした。照射線種は BL8S2 の白色 X 線を利用した。照射試料 を図 1 のように 1 度の照射で 3 試料に照射できるように設置した。変異処理後、CAO 平板培地に塗抹し、30 $^{\circ}$ で 3 週間培養後、直径 1 mm 以上のコロニーを CAO 培地生育株(尿素非生産酵母の一次選抜)として釣菌した。また、照射試料に滅菌水を加えて適宜希釈した後に、YPD 平板培地に塗抹し、30 $^{\circ}$ で 2 日間培養後、コロニーを計数し、変異処理前の酵母数より酵母の生存率を算出した。変異処理時間は、それぞれの酵母について、30 秒、60 秒、300 秒、600秒、1800 秒間とした。

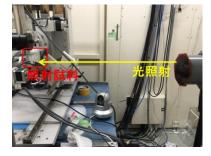


図1 照射時の様子

3. 結果および考察

シンクロトロン光照射時間毎の酵母生存率は、FIA1 株で 30 秒: 45.8%、60 秒: 21.3%、300 秒: 11.3%、600 秒: 4.2%、1800 秒: 0.79%、12 株で 12 株で 12 秩で 12 秩で 13 秋、14 代表 14 代

今後は本光照射条件にて再度光照射実験を行うとともに、本実験で取得した CAO 培地生育株をもと に育種を進めていく予定である。