

XAFS, XPS, および XRD による SUS630 ステンレス鋼の析出硬化メカニズムの解明

清水 皇、伊東 真一、浅井 英雄 株式会社デンソー 材料技術部

1. 測定実施日

2016年07月21日10時-18時30分(2シフト), BL7U 2016年08月04日10時-14時00分(1シフト), BL8S1 2016年10月13日10時-14時00分(1シフト), BL5S1 2016年11月10日10時-14時00分(1シフト), BL5S1

2. 概要

2020 年代からの水素エネルギー社会に向けて、水素貯蔵材料、燃料電池セ パレーターおよび電極材料として期待されている析出硬化系ステンレス鋼の 高強度化メカニズムを理解する必要がある。本課題では、X 線吸収微細構造 (XAFS) 法、X 線光電子分光法 (XPS) および X 線回折法 (XRD) 等を駆使し、 SUS630 析出硬化系ステンレス鋼中のバルク fcc-Cu ナノ粒子の構造および電子 状態を観測する事を目的とした。結果として、SUS630 の析出硬化現象におけ る同ナノ粒子の機能が初めて明らかにされた。

3. 背景と研究目的

近年、水素燃料電池等の研究開発が進み、水素燃料を基本としたグリーンエネルギー革命が加速化してきている [1]。トヨタ自動車の水素燃料電池車(MIRAI)や家庭用発電機エネファームはその先駆け的存在と言える。経済産業省は各種水素燃料製品の将来動向を試算しており、例えば燃料電池車では、2025年までにMIRAIだけで3万台の世界販売台数に到達するとしている [2]。しかし、水素は最も軽量且つ反応性に富む物質であるため、ステンレス (SUS)製の貯蔵容器やセパレーター (ガス流路分離・電池電極の二機能を担う部材)の微小領域へ容易に侵入し、SUS 材が水素脆化する事が懸念されている。

現在、汎用的なステンレス鋼 (SUS)の中で耐水素脆性が比較的高いとされている材料は、析出硬化系 SUS (e.g., SUS630, SUS631)である。ここでの析出とは、固溶処理・冷却の後にさらに材料に加熱処理を加える事で、「バルク粒内」に Cu、Ni、Al 等を含む金属間化合物を析出させる事を意味する^{*}。この

特有の処理方法により、材料の塑性変形が抑制され、高い強度が付与されると 言われている。しかし実際には、SUS 中における析出物の化学組成・構造・ 機能はほとんど明らかにされていない。このため、析出硬化の詳細メカニズム が理解されないまま、結果 (= 硬度) に依存した材料開発が行われているのが 実状である。これは、コスト面において大きな"disadvantage"と言える。

本研究では、あいちシンクロトロン光センター(あいち SR)で測定可能な X 線吸収微細構造法(XAFS)、X線光電子分光法(XPS)、X線回折法(XRD)お よび他機関における各種分析法を駆使し、結晶構造および電子状態の二点から、 典型材料である SUS630の析出硬化メカニズムを解明する事を目的とした。

* [SUS630 の析出硬化処理について]

析出硬化における熱処理条件は、日本工業規格 (JIS G 4303) に示されており、国内における鉄鋼材料メーカーはこれに準拠した加工工程を組んでいる。 Table 1 に、代表的な析出硬化系材料である SUS630 の熱処理条件を示す。 SUS630 では、Cu を含む析出物が生成するとされている。

但し、ここに示す熱処理条件は絶対条件ではなく、また加熱時間についての 規定はない:各社独自の析出処理方法が考案される事も少なくない。

Heat treatment	Symbol	Condition	Hardness (Rockwell)	
Solid solution	S	$1020-1060 \text{ °C}$ $\rightarrow \text{quench}$	≤38	
Precipitation hardning	H900	After S, 470-490 °C → quench	≥40	
	H1025	After S, 540-560 °C → quench	≥35	
	H1075	After S, 570-590 °C → quench	≥31	
	H1150	After S, 610-630 °C → quench	≥28	

Table 1. Heat treatment standard for precipitation hardning of SUS630.

4. 実験内容

4.1. あいち SR 成果公開実験

市販の SUS630 鋼 (10¢, t = 2 mm, 仕込み成分比 = Table 2) 固溶体 (S) に対して、マッフル炉において H900 または H1150 析出硬化処理を施した。硬化処理における加熱時間は 4 h とした。

あいち SR BL5S1、BL7U および BL8S1 において、3 種類の SUS630 サンプ ル(S, H900, H1150) の XAFS、XPS および XRD 測定を室温下で実施した。XAFS では、19 素子 Ge-SSD 検出器 (CANBERRA) を用いた部分蛍光収量測定 (PFY) を実施し、観測領域は、Cu-K、Fe-K、Cr-K 端とした。 XPS における入射エネ ルギーは、1050 および 1200 eV とし、深さ方向における Cu 析出物の電子状態 の差異を観測する事を試みた (エネルギー分析器: MBS A-1, $p < 1x10^{-10}$ Torr)。 XRD における入射エネルギーは、hv = 14.37 keV ($\lambda = 0.086$ nm) とした。尚、 XAFS においては、バルク中の Cu 析出物をより観測しやすくするため (蛍光 強度を増加させるため)、加熱処理によって生じた表面酸化物層を手研磨によ って除去した。研磨前後においてスペクトル構造の変化はなかった。

Table 2. Composition of SUS630 in the preparation stage (wt%).

С	Si	Mn	Р	S	Ni	Cr	Cu	Others
≤0.07	≤1.00	≤1.00	≤0.04	≤0.03	3.00~ 5.00	15.00~ 17.00	3.00~ 5.00	Nb: 0.15~ 0.45

4.2. 放射光硬 X 線光電子分光 (HAXPES)

SUS630-S、H900、H1150 サンプルにおけるバルク領域(数 10 nm 深さ)の 内殻電子状態を観測するため、SPring-8 において HAXPES 測定を実施した (R4000, Scienta Omicron)。入射 X 線のエネルギーは 8 keV とした。

4.3. lab-HAXPES

同サンプルにおけるバルク領域の内殻電子状態をより正確に観測するため に、サンプル表面を手研磨した後、ラボ HAXPES 測定を実施した (AXIS-ULTRA2, Shimadzu/Kratos)。光源には、Ag-L α (hv = 2.98 keV) を使用し た。

4.3. 光電子収量分光

同サンプルの価電子帯近傍の電子状態を観測するために、サンプル表面を手 研磨した後、北陸先端科学技術大学院大学 (JAIST) において光電子収量分光 測定を実施した (AC-2, 理研計器)。

5.1. SUS630 中における析出物の構造同定

Fig. 1 (a)-(b) に、SUS630 の S 状態 (析出硬化前) および H900 析出硬化状態 の Cu、Cr、および Fe-K 端 X 線吸収端端近傍構造 (XANES) スペクトルを示 す。ここで、析出硬化前後において、Cr および Fe の電子状態に変化はないが、 Cu の電子状態のみ大きく変化している事が分かる。まず、S 状態における Cu 成分の電子状態は、bcc-Cu のそれに類似する [3]。これは、マルテンサイト (bcc) 構造を有する SUS630 中で、主として Cu 原子が置換型で存在する事が意 味している。一方、H900 処理後は、~8980 eV における fcc-Cu 由来のピーク強 度が 15 %程度増加する。以上の事から、析出硬化処理によって、SUS630 の bcc 格子は変化しないが、Cu 原子のみが bcc 格子外へ排斥され、バルク結晶中 に Cu 同士が凝集析出した fcc-Cu が生成する事が明らかになった (Fig. 1 (d))。

Fig. 1. XANES spectra of the solid solution (S) and H900 hardening states of SUS630: (a) Cu-K edge; (b) Cr-K edge; (c) Fe-K edge. (d) Structural models of the S and H900 states.

Fig. 2 に、SUS630 の S 状態 (析出硬 化前) および H900 析出硬化状態の Cu-K端広域X線吸収微細構造スペクト ルのフーリエ変換から得られた Cu 原 子周りの動径分布を示す。ここで、S および H900 状態共に、Cu から~2.4 Å を中心に周辺原子が配位している事が 分かる。このピークを Gauss 関数で詳 細に解析すると [4]、Fig. 2 中に示す様 に 2 成分に分離する事ができる。~2.5 Å における成分は、Cu 箔における Cu-Cu 原子間距離に一致するため、バルク中 に析出した fcc-Cu に帰属される。一方、 Cu よりも原子半径が小さい Fe や Cr との ンサイト格子における Cu 原子の第一近 H900 処理後では、fcc-Cu (析出物) が bcd

Fig. 2. Normalized fourier transformed EXAFS spectra of the solid solution and H900 states of SUS630. The toppest curve is the reference spectrum of the Cu-foil

に析出した fcc-Cu に帰属される。一方、低距離側の~2.3 Å における成分は、 Cu よりも原子半径が小さい Fe や Cr との結合を示している (= SUS630 マルテ ンサイト格子における Cu 原子の第一近接原子)。ここで、S 状態と比較して H900 処理後では、fcc-Cu (析出物) が bcc 格子の Cu よりも相対的に多い事が 分かる。この結果もまた、Fig. 1 (a) に関する議論と同様に、H900 処理により SUS630 bcc 格子から Cu が排斥され、Cu 同士が凝集析出する事を示唆してい る。

Fig. 3 に、S および H900 処理後の XRD スペクトルを示す。S、H900 状態 共に、bcc-Fe 由来の回折強度が強く観 測 されている (JCPDS PDF No. 03-065-4899)。一方、それとは別に、 bcc-Fe(110)に対して 0.4 %程度の弱い 回折であるが、27.8、39.9、および 47.1 deg.に三つの特徴的な回折ピークが見 られる。これらのピークは、fcc-Cu に 由来すると考えられる (JCPDS PDF No. 03-065-9743)。XRD の原理において、同 一の結晶系で格子定数が近い物質は区

Fig. 3. XRD spectra of the solid solution (S) and H900 hardening states of SUS630. The spectra was obtained by the incident SR X-ray of $\lambda = 0.086$ nm.

別困難であるが (例えば、pure Cu と Fe-Cu 二元合金 [5])、XANES スペクトル (Fig. 1) において、Fe や Cr の電子状態に変調はなかったため、析出硬化処理 により SUS630 中に生成する析出物は、純粋な fcc-Cu であると結論付けられる。

5.2. 析出硬化 SUS630 中における fcc-Cu 析出物の粒径評価

SUS630 bcc 結晶中に析出した fcc-Cu の粒径を、XRD スペクトルの詳細解析 により算出する。XRD スペクトルから粒径を算出するには、式 (1) に示す Scherre の式 [6] が有効である。

$$D_{hkl} = \frac{K\lambda}{\beta\cos\theta} \tag{1}$$

 D_{hkl} : 結晶子サイズ (nm)、K: 形状因子 (球体の場合、K = 1)、 λ : 入射 X 線の 波長 (nm)、 β : (回折ピークの Lorentz 幅)x2 (rad)、 θ : ブラッグ角 (rad)

一般的に、析出硬化系ステンレス中の析 出物は直径数 10 nm の球体とされている ので [7]、本研究においては、K = 1、結 晶子サイズ (D_{hkl}) = 粒径と仮定した。ま た、回折ピークの Lorentz 幅の 2 倍値 (β) は、着目するピークを Voigt 関数でフィ ッティングする事で取得された。

Fig. 4 に、H900 処理サンプルにおける fcc-Cu(200)ピークに対するフィッティ ング結果を示す。この図から、同回折ピ ークは 1 本の鋭い Voigt 関数に一致し、 析出した fcc-Cu 粒子のサイズにばらつ きが少ない事が分かる。この Voigt ピー クにおける Lorentz 幅は 0.1257 deg.であ り、Lorentz ピークの半値全幅 (FWHM) は 0.2514 deg. (=0.004387 rad) となる。こ の値を式 (1) における β とし、H900 サン プルにおける fcc-Cu 析出物の粒径を求

Fig. 4. The fcc-Cu(200) diffraction peak of the H900 state and a curve fitted with Voigt function. The inset shows an image of Voigt function corresponding to the summation between a Gaussian and a Lorentzian functions.

めると、20.1 nm と算出される。同様に、S や H1150 サンプルの fcc-Cu(200) に おいても析出物の粒径が算出される。以上の結果を Table 2 にまとめる。

Sample	Particle size [nm]	
S	28.8	
H900	20.1	
H1150	31	

Table 2. Size of precipitated particle in SUS630.

Table 2 から、SUS630 中に析出する fcc-Cu 成分は、数 10 nm サイズのナノ粒 子であると言える。またこの結果から、既に S 状態で、fcc-Cu ナノ粒子は存在 する事が分かる。面白い事に、H900 処理で析出した Cu ナノ粒子は、S 状態の ものよりも小さく、一方、H1150 処理で析出した Cu ナノ粒子は、S 状態より も大きい。析出硬化処理に、Fig. 1 および 2 で議論された、SUS630 の bcc 格子 から Cu を排斥し、Cu 同士を凝集析出させる効果がある事は確かであるが、 それとは別に析出処理温度によって、既存の Cu ナノ粒子がマトリックス中に 微細分散化したり (S → H900)、逆により凝集して粒子が成長したり (S → H1150) する事が推測される。

Fig. 5 に、Cu ナノ粒子の粒径とS 状 態および析出硬化処理 (H900・ H1025・H1150 for 4 h) を施した SUS630の Rockwell 硬度 [8] との相関 を示す。Fig. 4 で解析した fcc-Cu(200) ピークに加えて、fcc-Cu(111)および (220)ピークから算出された粒径もプ ロットされている。

S 状態では、粒径に回折ピーク依存 性がなく等方的な球状粒子が存在する と言える。一方、析出硬化処理後は、 回折ピークによって算出粒径に差があ

Fig. 5. Correlation between size of precipitated Cu nano-particle and Rockwell hardness of SUS630.

り、析出物が異方成長している事が分かる。これは、Cu ナノ粒子が完全な自 由空間で析出しているわけではなく、粒界の様な制限場で成長している事を示 唆している。特に(220)回折ピークから見積られた粒径については、S から析出 硬化状態への変化が少ない。即ち、[110]方向には Cu 粒子の成長を妨げる物理 的制約があると考えられる (例えば、支配的な粒界表面 = {110}系表面)。

析出硬化後において、各回折ピークから算出される粒径の平均値 (平均粒

径) に対して SUS630 の Rockwell 硬度をプロットすると、両者の間に一次相関 が認められる。よって、Cu 粒子が微細化する程、結晶粒界の滑り抑制効果が 向上し、高い硬度が得られると推測される。逆に、Cu 粒子が粗大化する場合 は、硬い SUS630 と軟らかい金属 Cu の混合物が形成され、材料全体としての 硬度は減少すると考えられる。これは、いわゆる過時効と呼ばれる状態である [9]。

析出硬化処理による SUS630 への硬度付与は、従来、経験的に認識・適用されてきたが、本研究から、粒子サイズが硬度を規定する一つのファクターである事が初めて明らかになった。

5.3. SUS630 中における fcc-Cu ナノ粒子の電子状態

Fig. 6 に、S 状態および H900 処理後の SUS630 に対して測定された Cu 2p3/2スペク トルを示す (ラボ HAXPES)。両者共に、高 結合エネルギー側に裾を引く構造をしてお り、バルクの金属状態が観測されている事 が分かる。この事に基づき、両スペクトル を、ガウス関数とDoniach-Sunjic 関数 [8] を 畳み込んだ関数でフィッティングした。結 果として、いづれのスペクトルも二つの成 分で構成される事が分かる。S 状態の高結 合エネルギー側 (932.8 eV)の成分は、 SUS630 の bcc 格子における Cu に帰属され る。一方、H900処理によって強度が増加す る 932.3 eV におけるピークは析出した fcc-Cu ナノ粒子に帰属される。詳細は後述 するが、組成や結晶構造が変化すると金属 Cuの電子状態に差異が生じる事は、非常に 興味深い。

Fig. 6. Cu $2p_{3/2}$ HAXPES spectra of the S and H900 states of SUS630. The binding energies were corrected with the Fe $2p_{3/2}$ peak. The spectra were fitted with Doniach-Sunjic function convoluted with Gaussian function.

Fig. 7 に、Cu-K 端 XANES スペクトル (Fig. 1 (a)) の Fermi 準位近傍における拡大図を示す。ここで、8981 eV における fcc-Cu 由来のピーク強度が、Cu 箔、H900、S 状態の順に減少している。三つのスペクトルでは、全て二次電子 バックグランドレベルが 1 に規格化されているので、Cu の観測量は同一と見

なせる。よって、ピーク強度減少の原因 としては、以下の二項目が挙げられる。

- (i) Cu 1s 電子の遷移先準位が減少
- (ii) Cu 4sp バンドの占有率減少による内殻電子遮蔽効果の増加

まず (i) は、Cu 4sp バンドの電子占有 率が極めて高い場合に起こり得る。しか し、数 10 nm までに成長した fcc-Cu ナノ 粒子とバルク金属 Cu のバンド構造は同 ーであると考えられ、また Cu 原子 1 個当 たり価電子帯を構成する電子は 1 個の 4s 電子のみなので、バンド占有率は 100 %

Fig. 7. Cu-*K* edge XANES spectra around Fermi levels of Cu-foil, the S and H900 states.

より十分に低いはずである。よって、(i)の可能性は否定される。一方(ii)は、 金属 Cu が電荷移動によって電子を失う場合に起こり得る。SUS630のバルク 中では、Fe や Cr で構成されるマトリックスと fcc-Cu ナノ粒子が無数の界面を 形成しているはずなので、こちらの効果は十分に期待される。実際に、Cu(001) 表面に Fe 単原子層を形成した構造モデルでは、Cu から Fe へ電子が供与され る挙動が理論的に予測されている[9]。

図8に、S状態およびH900処理後のSUS630に対して測定された光電子収量スペクトルを示す。いづれのスペクトルも、入射エネルギーが5.2-5.4 eVの領域で傾きが変化する挙動を示している。この事から、スペクトルに二本の接線を適用し、それぞれについて横軸切片を評価すると、H900サンプルについては4.69 eVおよび4.96 eV、Sサンプルについては4.76 eVおよび5.05 eVと求められる。

Fig. 8. Photoelectron yield spectra (PYS) of the S and H900 states. These spectra are normalized with the number of photon from D_2 lamp. To analyze metallic states, the intensities are raised to the 1/2 power. The inset shows an image in case of that interfaces of "fcc-Cu nano-particle/SUS630 matrix" are not fully formed in the bulk.

この解析結果は、H900、S サンプル間で、横軸切片の差異が殆どない事を意味している。より小さな仕事関数 (~4.7 eV) は、多結晶 Cu 基板の値 (4.6 eV) [10] に近いので、fcc-Cu ナノ粒子の仕事関数と考えられる。但し、バルク中の Cu ナノ粒子の真空準位は、SUS630 マトリックスとの相互作用によって変化している可能性があるので、ここでの 4.7 eV という仕事関数は、表面領域に存在する Cu ナノ粒子に由来する可能性が高い。一方、より大きな仕事関数(~5.0 eV) は、SUS630 マトリックスに主として由来する。また、バルク中の Cu ナノ粒子が SUS630 マトリックスと接合界面を形成し、互いに電子の授受が可能な状態になっていれば、ナノ粒子とマトリックスのフェルミ準位は一致するはずであり、この場合、ナノ粒子の仕事関数も同じく~5.0 eV として観測されると考えられる。

もし、これらの間で十分に界面が形成されていないとすると、両者の間でフェルミ準位が一致しないので (= 熱平衡状態に達していないので)、Cuナノ粒子が自由に存在している時の仕事関数 (4.7 eV) から SUS630 マトリックスの仕事関数 (~5.0 eV) の間で、PYS スペクトル中にもう一段階変化する領域が現れる可能性がある (Fig. 8 挿入図)。

5.4. (まとめ) 電子状態に基づく SUS630 析出硬化の理解

以上、Fig. 6 から Fig. 8 で議論された SUS630 析出硬化系の電子状態を、Fig.9 に 示すエネルギーダイアグラムにまとめる。 まず、バルク中では、fcc-Cu ナノ粒子と SUS630 マトリックスの接合界面が十分に 形成され、粒子からマトリックスへ電子が 供与される事により、互いのフェルミ準位 が一致する。この事は、結晶中で fcc-Cu ナ ノ粒子がフリーに存在する訳ではなく、 SUS630 の格子に力学的作用を確実に及ぼ す事を意味している。また、Cu 2p 内殻電 子状態からは、SUS630の bcc 格子 (マトリ ックス) における Cu 原子は、より大きなケ ミカルシフト示しており、マトリックスに 対してより多くの電子を供与している事が 分かる。一方、Cuナノ粒子に対して観測さ れている結合エネルギーは、金属 Cu の値 [11] とほぼ一致しており、ケミカルシフト はほぼゼロである。この事は、マトリック

Fig. 9. Energy diagram at the interface, in the SUS630 bulk crystal, between the fcc-Cu nano-particle and the SUS630

スに対する Cu 1 原子当たりの電子移動量は極僅かであり、SUS630 バルク中で fcc-Cu ナノ粒子が金属として安定的に存在する事を示唆している。析出粒子が 化学的に安定している事により、恒久的に SUS630 の析出硬化状態は保持され ると理解される。

6. 今後の課題

本研究においては、SUS630の析出硬化メカニズムを構造および電子状態の 二面から理解する事が出来た。今後は、Fig.5に示した粒子サイズと硬度の関 係を補完し、同図をより実用的なものに仕上げていく。また今回は、サンプル 表面を研磨し、表面酸化物を除去する事で Cu 析出物の観測を可能としたが、 今後は、例えば、SPring-8における 10 keV 超入射エネルギーの HAXPES を利 用し (Appndix 参照)、バルク Cu 析出物の化学状態を非破壊且つより正確に観 測したい。

7. 参考文献

[1] 水素社会へのロードマップ トップ企業が語る 8 兆円ビジネスチャンス、川 崎重工 西村元彦.

- [2] 水素社会の実現に向けた取組に関する調査、野村総研 (2016).
- [3] 家口 浩ら、神戸製鋼技報 57 (2007) 49.
- [4] 櫻井 雅樹、放射光 15 (2003) 167.
- [5] P. Crespo et al., Phis. Rev. B 48 (1993) 7134.
- [6] P. Scherrer, Nachr. Ges. Wiss. Göttingen, 26 (1918) 98.
- [7] 木村 秀途、鉄と鋼 86 (2000) 343.
- [8] 日本工業規格、JIS G 0202.
- [9] M. Murayama et al., Metallurgical and materials Transactions A 30 (1999) 345.
- [10] B. Tränkenschuh et al., Surf. Sci. 601 (2007) 1108.
- [11] K. Kraft et al., Phys. Rev. B 49 (1994) 11511.
- [12] A. Siokou et al., Appl. Surf. Sci. 257 (2011) 9785.
- [13] G. Ertl et al., Appl. Surf. Sci. 5 (2011) 49.

Appendix

未研磨の SUS630 における fcc-Cu ナノ析出物の Cu 2p_{3/2}XPS 測定も試行し始め ている (Figs. S1&S2. SPring-8, あいち SR BL7U)。研磨サンプル (Fig.6) と同様 に、低結合エネルギー側にナノ粒子由来の成分が存在する様に見えるが、測定 時間を増加させ、S/N 比をさらに向上させたスペクトルで詳細検討したい。

Fig. S1. Cu $2p_{3/2}$ HAXPES spectra of the S and H900 treated SUS630.

Fig. S2. Smoothed Cu $2p_{3/2}$ XPS spectra of the S and H900 treated SUS630, obtained at BL7U in Aichi SR.