

コンビナトリアル技術による放射光を利用した リチウム電池用正極材料の高速スクリーニング

藤本憲次郎¹・南部公平¹・吉村真実¹・滝沢和哉^{1,2}・ 佐藤吉宣²・山本信雄²・伊東真一² ¹東京理科大学・²株式会社デンソー

1. 測定実施日

2016年9月2日	10:00~14:00(2シフト), BL5S2
2016年9月13日	14:30~18:30(1シフト), BL5S2
2016年10月6日	10:00~18:30(2シフト), BL5S1
2016年10月7日	10:00~18:30(2シフト), BL7U
2016年10月18日	3 10:00~18:30(2シフト), BL5S2

2. 概要

本申請では、電気自動車等への実用化が進むリチウムイオン電池用正極材料 について、構造と物性の相関を精査しつつ、着目されつつあるマテリアル・イ ンフォマティクスの要となる高速評価技術の構築を目指したものである。

リチウムイオン二次電池正極材として対象となる構造は多く報告されてい るが、本申請では、層状岩塩型およびスピネル型結晶構造を有する多元系複合 酸化物に着目し、コンビナトリアル技術を駆使して見出した新規候補材料につ いて放射光 X 線回折・XAFS により詳細な構造の評価を行った。層状岩塩型 では、これまでに層状岩塩型の単一相としていた物質に、実際には岩塩型構造 が第二相として含まれていた。スピネル型では酸素欠陥の有無や遷移金属サイ トの価数が明確になった。また、材料評価と並行して、キャピラリーを用いる ことなく、より簡便に回折測定を行う治具開発を行い、次のステップに繋がる 成果をえた。詳細は以降に触れることとする。

3.背景と研究目的

リチウムイオン二次電池正極材のは LiCoO₂ も代表例である層状岩塩型の ほかに、スピネル型、オリビン型、ポリアニオンなど多くの物質が研究対象材 料となっている。リチウムの代替としてナトリウムやマグネシウムを用いる研 究も活発になっている一方、リチウム系も遷移金属サイトを他元素置換した系 で特性向上を図っている。我々は後者の多元系リチウムイオン二次電池正極材 の探索の道を選び、材料探索を進めている。これまでに東京理科大学のグルー プでは層状岩塩型を有する Li(Ni,Co,Fe,Ti)O2の探索を進め、自ら開発したコ ンビナトリアル高速材料合成装置と高速粉末 X 線回折装置を駆使して Li2O-NiO-CoO1.33-TiO2 および LiNiO2-LiCoO2-LiFeO2-LiTiO2 から構成され る疑四元系反応図を構築してきた。電池特性評価により、Li(Ni,Co,Ti)O2 では 遷移金属サイトに Ti が 20 %前後固溶し、かつ Ti が 10 %含まれる組成では サイクル特性が他の組成と比較して優れていることを見出してきた。さらなる 多元素系を目指した LiNiO2-LiCoO2-LiFeO2-LiTiO2 では、層状岩塩型 Li(Ni,Co,Fe,Ti)O2 の固溶領域も確認し、電極特性との関連性を調査している ところである。スピネル型結晶構造であるLiMn2O4についても Mn サイトへ 多元素置換する研究が多く見られるなか、Li(Ni,Mn,Ti)2O4系複合酸化物に着 目し、層状岩塩系と併せて構造と物性の関連性を調査しているところである。

本申請では、上述の層状岩塩型 Li(Ni,Co,Fe,Ti)O₂ およびスピネル型 Li(Ni,Mn,Ti)₂O₄の複数の試料群について、構造と物性との相関性をより明確 なものとするために、放射光 X 線回折および XAFS 測定を行った。

また、材料探索の高速化や計算化学による材料予測が中心となるマテリア ル・インフォマティクスが着目されつつある。合成技術および熱処理温度・雰 囲気・時間を統一させて得たライブラリーの膨大な生データを用いることで、 計算予測と物性の実測データがリンクすると期待し、その実現へ向けた一歩と して結晶学データベースの高速・高効率での構築が必要となる。近年、放射光 施設が増えてきており、放射光 X 線回折が身近なものになってきた。一般的 に粉末試料の放射光 X 線回折を測定するには一試料ごとにガラスキャピラリ - (Fig.1)へ封入するプロセスが必要になる。

申請者が開発したコンビナトリアル材料高速 合成システムは、最大で一日当たり 100 種類の ライブラリー作製が可能であり、その 100 種類 を日々放射光 X 線回折測定用のキャピラリーへ 封入するのは現実的ではない。そこで、それに代 わる放射光 X 線回折測定用治具の開発を行う。

Fig.1 回折実験用試料キャピラリー

4. 実験内容

層状岩塩型 Li(Ni,Co,Fe,Ti)O₂ およびスピネル型 Li(Ni,Mn,Ti)₂O₄ の試料群 は液相プロセスのひとつである静電噴霧堆積法(Electrostatic Spray Deposition; ESD)を用い、酸素雰囲気下 700 で熱処理することで得られ た。ちなみに、上述の手法により合成した理由は、高速材料探索に用いた装置 が ESD を基盤技術としたものであり、試料作製の再現性を含めたためである。 得られた試料は BL5S2 において室温下、波長 0.6 の条件下で回折測定を、 BL5S1 において室温下、Ni,Mn,Co,Ti の各 K 端の XAFS 測定を、BL7U にお いて室温下、O-K 端を全電子収量法により測定した。

放射光 X 線回折測定用治具の開発にあたり、申請者が開発してきたコンビ ナトリアル材料高速合成システムを紹介する必要がある。Fig.2 は PC 制御に よるロボットシステムであり、36 個の窪みがある 35 mm四方(厚さ 5 mm)の反 応基板へ化学組成の異なる粉体多水準試料が埋まる。既存の手順では、粉体や 膜のライブラリーが埋まる反応基板を熱処理した後、各試料を反応基板から取 り出すことなく Fig.3 の高速 X 線回折装置により測定をしていた。しかしなが ら、X 線回折装置の装置原理上、厳密な格子定数を算出することは難しく、相 同定をするのが限界であった。今回の申請では熱処理後のライブラリーをポリ イミドテープへ転写し、数 10 から数 100 の試料が並ぶテープを作製し、カセ ットテープに似た概念で、連続的に放射光 X 線回折を測定できる治具を試作 した。

Fig.2 コンビナトリアル材料高速合成システム

5.結果および考察

Fig.4 および Fig.5 は層状岩塩型 Li(Ni,Co,Fe,Ti)O₂の一例として複数試料の XAFS および LiNi_{0.4}Co_{0.3}Fe_{0.1}Ti_{0.2}O₂のリートベルト解析結果を示したもので ある。この組成は実験室系 XRD では単一相の限界領域のひとつと見ていたが、 放射光 X 線回折測定により、実際には第二相として岩塩型 LiFeO₂を含む混合 相であることが分かった。また、これまでの実験室系 XRD では層状岩塩構造 におけるカチオンミキシング(リチウムイオンサイトへ他の遷移金属が混入す る)比が高いと予測されていたが、実際にはその比が低く、酸素雰囲気で熱処 理した効果があったことも示された。(*)また、XAFS 測定において Ti が 4 価、酸素欠損が無いとした場合、Ni および Fe の K 端を測定して求めた Co の平均価数は Fe が増えるにつれて Co の価数は下がる傾向が見られた。これ ら放射光のデータを層状岩塩型を含む組成領域で全て収集し、データベース化 することで、ディープラーニングなどで材料予測に効果を発揮すると考えられ る。

(*)層状岩塩系のリチウムイオン二次電池正極材を合成するうえでカチオンミキシン グは充放電の容量を低下させる大きな問題となっており、その改善手法のひとつとして 合成過程における熱処理時に酸素雰囲気にすることで改善すると言われている。

 Fig.4
 LiNi0.4Co0.4Ti0.2O2, LiNi0.4Co0.3Fe0.1Ti0.2O2, LiNi0.4Co0.2Fe0.2Ti0.2O2
 のXAFS 解析結果

Fig.5 LiNi_{0.4}Co_{0.3}Fe_{0.1}Ti_{0.2}O₂のリートベルト解析結果

スピネル型 Li(Ni,Mn,Ti)₂O₄のなかでは LiNi_{0.5}Mn_{1.3}Ti_{0.2}O₄ が電極特性とし て優れた性能を有していた。スピネル系については焼成時に酸素欠損型が生じ やすく、我々のグループで用いた静電噴霧熱分解法と酸素雰囲気焼成の組み合 わせでの酸素欠損の有無も定量的な情報として必要であった。Fig.6 および Fig.7 に LiNi_{0.5}Mn_{1.3}Ti_{0.2}O₄の XAFS データを示す。また、Table1 に Ni およ び Mn の価数ごとの存在比を示す。Ni²⁺/Ni³⁺=68%/32%, Mn³⁺/Mn⁴⁺=19%/81% を示し、Ti⁴⁺として電荷補償を考慮すると酸素は約 1%欠損することが分かっ た。この結果は放射光 X 線回折実験からリートベルト法による構造精密化計 算で得られた酸素のサイト占有率の結果とよい一致を示した。

また、BL7Uにおいて O-K 端の観察をしたところ、Ti 置換量が増えるにつ れてプレエッジ / メインピークの強度比が低下する傾向がみられた。これは少 量の Ti 置換に由来する Ni-O/Mn-O の混成の低下を示唆するものであり、配 位数低下 / 酸素欠損のの増加などが考えられ、回折および遷移金属の XAFS データを補うものとなった。

	比率(%)			777 Ab
元素	2佰	3価	4価	주평
Ni	0.681	0.319	_	2.319
Mar	0	0.194	0.806	3.806

Table1 XAFS による LiNi0.5Mn1.3Ti0.2O4の価数解析結果

Fig.8 左は 3 次元 CAD により作図した放射光 X 線回折のための主となる治 具で、Fig.8 右 は実際に初めて三次元プリンタにより印刷した冶具を平成 28 年 10 月 18 日にあいちシンクロトロン光センターの回折装置へ装着したもの である。測定試料は Fig.9 に示す概念図のように、Fig.2 のコンビナトリアル 材料高速合成システムで合成した多水準ライブラリーをシール材(実際はポリ イミドテープ)へ転写し、それを一列へ配列させたものを Fig.10 のように冶 具へセットした。測定可否を確認するために、ポリイミドテープへは NIST 標準試料のひとつである α—アルミナを均等付着させたもの、また研究対象で あるスピネル型 LiMn₂O₄をポリイミドテープへ転写したもの(Fig.10 が実試 料)を実際に測定したものである。Fig.11 が実際に得られた回折パターンで あり、構造精密化に耐えられる回折データが得られたことを確認できた。

Fig.8 放射光実験用冶具 3 D 図面(左) 測定時写真(右) < BL5S2 >

Fig.9 粉末ライブラリーの シール材への転写イメージ

Fig.10 測定対象試料を冶具へ装着させたときの写真

Fig.11 冶具を用いた放射光 X 線回折データ

6.今後の課題

層状岩塩型およびスピネル型の試料群については全ての回折・XAFS データの回収・解析が完了していないため、第5期での利用で完結を目指す。最終的には、自身の方法のみで作製した多水準試料群について、組成と構造のみならず、詳細な結晶学データをもデータベース化し、これをマテリアルインフォマティクスの領域へ生かしたい。

放射光 X 線回折のための治具開発については、多水準ライブラリーを転写 したポリイミドテープを順次測定位置へ送り込む機能の構築が必要であり、今 後はその実現を目指す。また、試作した治具は作製のたびに放射光施設である あいちシンクロトロン光センターにて実測定を実施し、浮かび上がる問題点に ついてさらなる改良を進めることを予定している。