

あいちシンクロトロン光センター

あいちシンクロトロン光センター(以下、AichiSR)の運用開始から9年目となる 2021 年度の活動を まとめた年報ができました。前年度に続き、新型コロナ感染の厳しい状況の中での運営となりましたが、 皆様のご協力の元、来場人数制限の他、できる限りの感染対策をすることで AichiSR を用いた実験を継 続することができました。施設全体ではこれまで 11 本のビームラインが設置されておりましたが、2021 年には新たに BL11S3 として 2 本目の企業専用ビームラインの設置が進み、2021 年 11 月より試験運用 が始まりました。これで AichiSR 創設当初に目標とした 12 本のビームラインを達成することができま した。これらの内の科学技術交流財団所有の8本と共に、愛知県所有1本と名古屋大学所有1本を加え た計 10 本が共用ビームラインとなっています。これら共用ビームライン、企業専用ビームラインを加 えた AichiSR 全体の運用実績については第1章にまとめてあります。総利用時間は年間 8,637 時間と なり、これまでで最大となりました。中でも測定代行については、感染症の拡大初期に利用が大きく拡 大した後も、その利便性を認識されたこともあって、全体の利用時間の1割ほどのレベルで定着してき ました。また、総利用時間の半分以上を産業界の利用が占め、アカデミアが約3分の1の利用となって います。これらの利用による研究成果の事例は第2章に示してありますが、その多くがアカデミアによ るもの、無償利用など公表可能なものから抽出したものです。その他にも企業を中心に成果非公開の課 題による成果があり、それらは地域を中心とした企業の研究開発に活かされていると思われます。これ らの研究開発の手段としての光源、ビームラインについてはその機器更新、改善による高機能化の試み を AichiSR で進めており、第3章、第4章にこれらについても述べています。その他、利用促進・拡大 のための様々な活動とその成果も後半にまとめてあります。

AichiSR は運用開始から9年目となり、高機能化と老朽化対策が課題となっております。2021年度 では、前年度から導入を進めて来た BL11S2 の平行光ミラーの試験利用が始まりました。X線 CT、更 には3次元 XAFS を目指します。これは AichiSR がこれから目指す高機能化の中のイメージング(可 視化)の方向に沿ったものです。他にも BL5S2 における検出器支持構造の改良、BL8S3 への大型撮像 検出器の導入、BL6N1 の駆動系の自動化の試みもあり、これらはもう一つの方向性、高速化・効率化に 向けたものと言うことができます。2021年度の第5期、第6期の募集では硬 X線ビームラインを中心 に申請数が募集枠を 50%以上越える事態となり、かなりのユーザーのご要望に応えられない事態が起き ました。他施設の利用停止と年度末の繁忙期が重なったことではあるものの、計測の高速化、効率化や 他施設との連携などの検討を進めます。その一方で、老朽化に伴い故障する機器が出始めています。中 でも光源のマイクロ波回路の一部のハンダ接合部で漏水が発生し、その部分の取り外し、工場で改修、 再設置のために1週間施設全体の運用を止める事態も発生しました。他の施設の状況も鑑み、この部分 を新規に製造し、同様な故障に対応することにしています。この他、既に進めている耐用年数の過ぎた 機器の更新を計画的に続けていきます。

AichiSR では、ここにまとめた 2021 年度およびこれまでの活動を振り返り、次の 10 年の研究開発の動向を見据えて将来計画 を検討して行きたいと考えています。今後ともご助言、ご協力を 頂きますようお願いいたします。

> 公益財団法人 科学技術交流財団 あいちシンクロトロン光センター 所長 國枝 秀世

目次

所長挨拶

1.	全体の	概要	1
	1.1 概	丧	2
	1.2 施	ī設の運転状況	3
	(1)	光源加速器	3
	(2)	ビームライン	3
	1.3 利	」用の状況	4
	1.4 年	=間の活動概要	6
2.	2021 年	F度成果事例	7
3.	研究開	発の状況	25
	3.1 研	f究開発2	26
	(1)	光源加速器2	26
	(2)	ビームライン	28
	3.2 外	部発表	3
	(1)	論文	3
	(2)	外部発表	5
	3.3 科	↓研費等外部資金の獲得状況4	8
4.	施設運	営の記録	9
	4.1 光	近源の状況	0
	4.2 ビ	ビームラインの状況	1
	(1)	財団ビームライン	j 1
	(2)	愛知県ビームライン 5	57
	(3)	名古屋大学ビームライン5	8
	(4)	企業専用ビームライン 5	59
	4.3 利	J用促進	52
	(1)	利用制度の概要	52
	(2)	産業利用コーディネーターの活動	53
	(3)	利用者からの要望への対応 ϵ	54
	(4)	放射線業務従事者教育訓練	55
	(5)	見学者数	6
5.	研究会	・セミナー	57
	5.1 講習	習会・研究会	;8
	5.2 シン	レクロトロン光利用者研究会【実地研修】 ϵ	59

5.3 セミナー	
5.4 第10回あいちシンクロトロン光センター事業成果発表会	
5.5 名古屋大学シンクロトロン光研究センターシンポジウム	
6. 成果報告書	
6.1 公共等利用成果報告書	
6.2 成果公開無償利用事業成果報告書	
7. 委員会	
7.1 あいちシンクロトロン光センター運営委員会	
7.2 あいちシンクロトロン光センター成果公開無償利用事業課題審査委員会	
7.3 その他委員会	
8. 安全管理	
8.1 放射線管理	
(1) 管理体制	
(2) 従事者登録	
(3) 職員用放射線業務従事者教育訓練講習会	
8.2 その他	
9. 施設管理	
9.1 電気	
9.2 水道	
10. 運営	
10.1 過去5年間の予算・利用料収入の推移	
10.2 運営組織	
(1) 公益財団法人科学技術交流財団 組織図	
(2) スタッフ名簿	
10.3 委員名簿	
(1) あいちシンクロトロン光センター運営委員会	
(2) あいちシンクロトロン光センター成果公開無償利用事業課題審査委員会	
10.4 支援教員(研究者)名簿	
付録	101
ビームライン配置図	102
共用ビームライン	102
光源の性能	102
アクセス	

1. 全体の概要

1 全体の概要

1.1 概要

AichiSR は、付加価値の高いモノづくりを支援する ため愛知県が整備している、「知の拠点あいち」に設置 され、2013年3月より、産業界、大学、愛知県の支援 を受けながら、公益財団法人科学技術交流財団が運営 している。2021年度末で運営開始から9年が経過し た。

開所当初6本だった財団所有ビームラインは、2015 年度及び2016年度に各1本を追加し、2021年度末現 在で8本となっている。また、他機関所有のビームラ インも徐々に整備され、2021年度は4年ぶりに新規ビ ームライン(企業専用)1本を設置・稼働した。その結 果、2021年度末現在で、名古屋大学所有1本、愛知県 所有1本、企業専用(株式会社デンソー所有)2本を 含む計12本が稼働している。

2021 年度も、2020 年度に引き続いて新型コロナウ イルス感染症の影響はあったが、一時的に利用者の来 所を制限した 2020 年度と異なり、感染対策に取り組 みつつ、通所利用を制限することなく運営を続けた。 年間を通じて運転に支障を来すような大きなトラブル もほとんどなく、企業専用ビームラインの新設や、測 定代行の利用が引続き高い水準であったことなどによ り、全ビームライン(12本)の利用時間数は過去最多 かつ財団の利用料収入は過去2番目の多さとなった。

【ビームライン設置の推移】

年度	BL 本数	事 項
2013	6本	2012年度3月にスタート
0015	0 +	BL1N2、BL2S1(名古屋大学)
2015	84	供用開始
0010	10 +	BL11S2供用開始、BL2S3(企
2016	10 本	業専用)設置
2017	11本	BL8S2(愛知県)供用開始
2021	12本	BL11S3(企業専用)設置

【運転計画】

- ・月曜日:光源調整・マシンスタディ ※月曜日が祝日の場合は、翌営業日に実施
- ・ 火曜日~金曜日:ユーザー利用日
- ・ユーザータイム:第1シフト 10:00~14:00
 第2シフト 14:30~18:30

・ユーザー受入日

例年並みの年間160日とし、施設の安定的な運転に 必要なマシンスタディは、年間53日を確保

- ・メンテナンスのための長期休業期間
 4月から5月前半
- ・光源系の安定運転のための保守・調整期間 10月後半~11月前半に1週間程度

【利用区分】

一般利用
 通営利用及び測定化行にす

通常利用及び測定代行において、主に企業が利用す る区分。成果を非公開とすることが可能

- ・中小企業利用 通常利用及び測定代行において、中小企業が利用す る区分。成果を非公開とすることが可能
- ・公共等利用
 通常利用及び測定代行において、大学、公設試験研究
 機関等の公共的な団体が利用する区分。成果公開が
 前提
- ・トライアル利用 公共等利用を除く通常利用において、ビームライン を試行的に利用する区分。利用料は半額

【利用方法】

- ・通常利用:
 ユーザーが AichiSR に来所して測定する方法
- ・測定代行
 ユーザーから預かった試料を AichiSR スタッフが代わりに測定する方法

※通常利用の申込方法

- ・定期利用申込 年6回、各期前月の初めに申し込む方法
- ・随時利用申込 定期利用申込終了後に空きのあるビームラインに申 し込む方法
- ・長期利用申込
 前期(第1~3期)、後期(第4~6期)の2回に分け
 て申し込む方法

1.2 施設の運転状況

(1) 光源加速器

光源加速器は、50MeVの直線加速器、1.2GeVブー スターシンクロトロン、1.2GeV電子蓄積リングで構成 されている。ビームラインにシンクロトロン光の供給 を開始した当初から、蓄積電流 300mAのトップアッ プ運転を行っている。トップアップ運転中の電流値の 変化は300mAに対して約0.1%である。光源加速器は、 通常月曜日はマシンスタディで、火曜日から金曜日が 利用日となっており、利用日には、朝8時過ぎから入 射を行い、夕方19時頃までシンクロトロン光の提供を 行っている。本年度の光源加速器の総運転時間は1,979 時間であった。前年度と比較すると約3.0%増加した。 このうちユーザーの利用時間は1,235時間、光源加速 器の高度化や安定化のためのマシンスタディ時間は 389間であった(4.1 参照)。

(2) ビームライン

8本の財団ビームライン (BL1N2、BL5S1、BL5S2、
BL 6N1、BL 7U、BL 8S1、BL 8S3、BL 11S2)、愛知県ビームライン (BL8S2)、名古屋大学ビームライン (BL2S1)、そして、企業専用ビームライン (BL2S3、
BL 11S3)の計 12本のビームラインで多様な測定が行われた。利用者の利便性を高めるため 2021 年度に実施した主な改善は次のとおりである。(4.2 参照)

【財団ビームライン】

- BL1N2: Excel VBA を用いた簡易 XAFS スペクトル 表示プログラムの開発
- BL5S1: SDD 遠隔移動システムの導入
- BL5S2: 高速化サンプルチェンジャーの利用開始及 び PDF 解析ソフトの導入
- BL6N1:真空チェンバーへの SDD 導入と大気圧チェ ンバーマニピュレータの自動化
- BL7U: エンドステーション観測装置の更新
- BL8S1:3連分光結晶の導入
- BL8S3:利用可能なカメラ長の拡大及び新規検出器 の導入
- BL11S2:広がったシンクロトロン光を利用した 2 次 元及び3次元 XAFS 測定

【愛知県ビームライン】BL8S2:位相CT測定システムの利用開始

【名古屋大学ビームライン】 BL2S1:二次元ピクセル検出器の導入に向けた検証

【企業専用ビームライン】 BL2S3:ビームライン機器自動監視システムの構築 ※BL11S3は2021年度12月に設置

1.3 利用の状況

2021 年度における全ビームライン 12 本の利用実績 は 8,637.0 時間と開所以来最も多かった。また、測定代 行の利用時間は 833 時間と、新型コロナウイルス感染 症の影響で急増した 2020 年度より少なくなったが、 2019年度以前と比較すると高い水準に留まった(図1)。 利用料収入は1億9,500万円と過去2番目に多くなった(図2)。

利用時間に占める利用者の構成は、産業利用が全体 の 59.2% (大企業 47.2%、中小企業 4.5%、産学共同 7.5%) で、半数以上を占めている (図 3)。前年度と比 べて、それぞれの区分の割合に大きな変動はなかった。

利用時間に占める地域別利用者の構成は、これまで 同様、愛知県内の利用が全体の半数以上を占めるが、 その割合は前年度より 4.0 ポイント減少した。また、 愛知県を含めた中部地域の利用も、前年度より 4.6 ポ イント減少した。一方、近畿からの利用者は前年度よ り 3.4 ポイント増、関東からは 0.6 ポイント増と割合 を伸ばしており、様々な地域からの利用が見られるようになってきている(図4)。

利用時間に占める業種別の利用状況は、開所以来毎 年度最も多い割合を占めている「輸送用機器」が38.0% と前年度よりもさらに減少した。その一方で、ここ数 年は「電気機器・電子部品」「化学」「調査・分析サービ ス」の利用が伸びており、それぞれ10%前後を占めて いる。その他、割合は小さいが、「金属・鉄鋼」や「食 品・ヘルスケア」など、幅広い産業分野に活用されてい る(図5)。

図 5 産業利用時間に占める分野別利用者の構成(全BL:12本)

1.4 年間の活動概要

2021年度の活動として「ユーザーの利便性向上に向けた取組」、「利用促進に関する取組」、「普及啓発に関する取組」の3つの取組を行った。

ユーザーの利便性向上に向けた取組では、定期的に 利用者アンケートを実施し、ビームライン技術者が中 心になって、ユーザーからの要望に対応した改善活動 の検討を行った。その結果、2021年度は、設備機器及 び施設について 37項目の改善を実施した(4.3(3)参 照)。また、新型コロナウイルス感染症の広がりを契機 にニーズが高まった測定代行を、継続して実施した。

利用促進に関する取組では、成果公開無償利用事業 を実施した(6.2 参照)。2021年度は、16件の課題を 採択し、報告会は、2022年4月26日fl Eに、会場での参加とオンラインによる参加を併用して開催し、186名の参加があった。また、産業利用コーディネーターが中心となって、利用相談、技術指導を継続的に行った他、講習会や実地研修を開催した(4.3(2)参照)。

普及啓発に関する取組では、新型コロナウイルス感 染症の影響により、機会は多くなかったものの、セミ ナー等の開催・関係学会等への参加や、展示会への出 展及び見学者の受入れを通じて、シンクロトロン光の 活用例をアピールした(4.3(2)参照)。

2. 2021年度成果事例

魔法角ツイスト2層グラフェンにおけるフラットバンドの観察

名古屋大学

乗松航

1. はじめに

2 層のグラフェンを、わずかに回転させて積層し たものを、ツイスト2層グラフェン(TBG)と呼ぶ (図 1(a))。2007年頃から、TBGにおいて、ツイ スト角に応じてエネルギーバンド構造が変わること が報告された[1]。言い換えると、単独でも様々な興 味深い性質を持つグラフェンの電子状態を変調させ る方法として、ツイスト角が注目されはじめた。中 でも 2018年に、魔法角と呼ばれる 1.1°のツイスト 角を持つ TBG (magic-angle TBG, MATBG)では、 超伝導が発現することが報告され、再び研究が活性 化した[2]。MATBG では、回転したグラフェンのバ ンドが干渉することにより、フェルミエネルギー付 近に図 1(b)のようなフラットなバンドが出現し、そ れにより状態密度が極めて大きくなることが、超伝 導の起源とされている。

このフラットバンドについて、角度分解光電子分 光測定(ARPES)による直接観察の結果が2021年 に報告された[3,4]。それぞれ、魔法角に近い1.34°お よび0.96°のTBGを機械的剥離法により作製し、詳 細な電子状態が調べられている。一方で、これらの 報告を含め、超伝導測定の結果を報告した研究でも、 グラファイト結晶からの機械的剥離により作製した 試料の大きさは、大きくても数十µmであった。よ

図 1(a) TBG の模式図。ここでは、ツイスト角 3.0°のものを示している。回転角によってモアレ 周期が変化する。(b) MATBG のエネルギーバン ド構造。フェルミエネルギー(*E*_F) 付近にフラッ トバンドと呼ばれる平坦なバンドが見られる。

り多角的な研究のためには、大面積の試料を作製す る必要がある。それに対して我々は、SiC 熱分解法 により、ミリメートルスケールの単一方位グラフェ ンを作製する技術を確立している。本研究の目的は、 SiC 熱分解法によって得たグラフェンを用いて大面 積 TBG 試料を作製し、その詳細な電子状態を ARPES 測定によって明らかにすることである。

2. 実験方法

2 枚の 4H-SiC(0001)単結晶基板を大気圧 Ar 中 1700℃で加熱することにより、大面積単一方位グラ フェンを作製した。そのうち1枚のグラフェンを引 き剥がし、もう1枚のグラフェン上に貼り付けるこ とで、TBG 試料を作製した。グラフェン転写につい ては、共同研究者である米国マサチューセッツ工科 大学の Jeehwan Kim 准教授が開発した手法を用い た[5]。得られた試料に対して、原子間力顕微鏡観察 およびラマン分光測定を行い、TBG が形成されてい ることを確かめた。その後、あいちシンクロトロン 光センターBL7U ビームラインにて、ARPES 測定 を行った。本稿では、ツイスト角 2.9°、1.1°(魔法 角)の試料の測定結果を報告する[6]。

3. 実験結果

3-12.9°ツイスト2層グラフェンの電子状態

図2に、ツイスト角2.9°の TBG 試料に対して行った ARPES 測定の結果を示す。図2(a) は、*ky*= -1.70 Å⁻¹、すなわちグラフェンのブリルアンゾーンにおける K 点付近で得られた ARPES 像である。 図から、*kx* = 0.0 Å⁻¹を中心とする強度の弱いバンドと、*kx*=0.09 Å⁻¹を中心とする強度の強いバンドが存在することがわかる。両者はいずれも、グラフェン特有の線形バンド分散によって特徴づけられる [7]。光電子の脱出深さを考慮すると、強度の弱いバンドが下層、強いバンドが上層のグラフェンに由来すると考えられる。また、それぞれの特徴は、線形

バンドの交点であるディラック点のエネルギー Eb が異なることである。ディラックエネルギー上のは、 下層グラフェンでは約 -0.27 eV、上層グラフェンで は -0.20 eV であった。Eb が負であることは、グラ フェンが電子ドープされていることを意味する。 SiC 上に形成されたグラフェンでは、六方晶 SiC の 自発分極と界面層の効果により、グラフェンは電子 ドープされることが知られている [8]。上層と下層 で電子ドープ量が異なるのは、基板からの距離が遠 いことにより、その効果がより弱くなることによる と考えられる。また、両者のディラック点が約0.09 A-1 離れているという事実は、グラフェンが互いに 約2.9°回転した状態で積層していることを示してい る。この回転角と Eb を考慮して、ツイスト2 層グ ラフェンのバンド構造をタイトバインディング法に より計算した結果を実験結果に重ねたものを、図 2(b)に示している。この計算では、層間相互作用を 考慮していない。実験結果は定性的にはよく再現さ れている。ただし、(a)において黒矢印で示すエネル ギーでは、青と赤の2つのバンドが交差する点で、 強度の弱い領域、つまりギャップが存在する。これ は、2 層のグラフェン間の層間相互作用が強いこと を示している。また、これらのバンドを3次元的に 描いたものを(c)に、逆空間のK点付近におけるモア レブリルアンゾーン (mBZ) を(d)に示している。(d) において、下層および上層グラフェンの K 点を、KL および Ku と表している。層間相互作用が強いこと から TBG はモアレ構造を持ち、その電子状態はモ アレ周期を反映した mBZ を形成する。図(e)には、 $E-E_{\rm F} = -0.2 \text{ eV}$ における $k_x \cdot k_y$ 像、つまり等エネル ギー面を示している。KL および Ku が観察される。 (f)および(g)にはそれぞれ、KLに対応する kx=0Å-1 および Ku に対応する $k_x = 0.09$ Å⁻¹における $E k_y$ 像を示している。(g)においても、強い層間相互作用 を示すギャップが、黒矢印の位置に観察される。図 (h)には、作製した5×5mm²の試料の各所において 測定した Ekx像を示している。図の中央には、試料 ホルダで固定した試料と、測定位置を示している。 図中、青点で示す位置で測定した結果が(a)である。 また、赤点で示す位置では、ギャップを持つ TBG の バンド構造が観察された。一方、黒点で示す位置で は、下層グラフェンのバンドのみが観察された。こ

図 2 2.9° TBG の ARPES 測定結果。(a) K 点付近の ARPES 像。(b) (a)に、2.9° TBG のバンド構造を 書き加えたもの。青と赤のバンドは、それぞれ下および上のグラフェン層に由来する。(c) TBG のバンド 構造の逆空間における模式図。(d) モアレブリルアンゾーン (mBZ)。(e) $E - E_{\rm F} = -0.2$ eV における $k_x k_y$ 像。(f) $k_x = 0$ Å⁻¹における $E k_y$ 像。(g) $k_x = 0.09$ Å⁻¹における $E k_y$ 像。(h) 基板上の複数箇所での ARPES 像。

れらの結果は、赤点が存在する少なくとも 3×5 mm²の範囲で、2.9°の TBG が形成されたことを示 している。つまり、ミリメートルスケールの TBG 試 料を得ることができた。

3-2 魔法角ツイスト2層グラフェンの電子状態

続いて、超伝導が報告された魔法角 1.1° TBG の ARPES 測定の結果を図 3 に示す。(a)には、試料の 光学顕微鏡像を、コントラストを強調して示してい る。エッジ付近のコントラストの薄い領域では、エ ピタキシャル単層グラフェン(EMLG)のみが存在 する。中央付近のコントラストがわずかに濃い領域 にグラフェンが転写されており、2 層のグラフェン が存在する。基板のエッジと、転写したグラフェン のエッジの角度は、0.6~1.0°程度であった。図(b)は、 この試料中央付近で得られた ARPES 像である。矢 印で示すように、複数のバンドが見られるものの、 図2と比較して明瞭に分離されていない。これは、 ツイスト角が小さいことを示唆している。層間相互 作用のない 1.1°の TBG を想定して計算したバンド 構造を実験像に重ねたものを、(e)に示す。青および 赤の矢印で示す2本のバンドが、定性的には再現さ れている。また、このARPES 像における $k_x = 0.016$ A-1付近の強度プロファイルを(c)に示す。(c)の強度 プロファイルには、破線で示すエネルギー -0.22 お よび -0.51 eV にピークが見られる。加えて興味深 いことに、-0.37 eV にも、弱いながらも強度極大が 見られる。図(f)は、層間相互作用を考慮して、ツイ スト角 1.08°の TBG に対して計算したスペクトル 関数を示している。定性的には、実験的に検出され た青および赤の矢印で示すバンドは再現されている。 また、-0.37 eV において、平坦なバンド、いわゆる フラットバンドが明瞭に観察される。図(d)は、(f)に おける kx=0.016 Å1付近の強度プロファイルであ

図3 魔法角 1.1° TBG の ARPES 測定結果。(a) 試料の光学顕微鏡像。(b) K 点付近の ARPES 像。(c),(d) (b)および(f)における k_x=0.016 Å⁻¹付近での強度プロファイル。(e) MATBG における層間相互作用のな いバンド構造を(b)に重ねたもの。(f) 層間相互作用を考慮して計算した 1.08° TBG のスペクトル関数。

る。-0.37 eV において、フラットバンドにより極め て強度の強いピークが存在する。従って、実験で得 られた-0.37 eV のピークは、計算と比較して強度は 弱いものの、フラットバンドによるものであると考 えられる。すなわち、大面積魔法角ツイスト2 層グ ラフェンにおけるフラットバンドの直接観察に成功 した。

この実験結果の特徴は、フラットバンドが -0.37 eV 付近に存在することである。これは、前節で述べ た基板の効果により、TBG が電子ドープされている ことを意味している。「はじめに」で述べた、フラ ットバンドの観察に成功した既報では、フェルミエ ネルギーにフラットバンドが観察されている。今回 の結果において、TBG が電子ドープされていること により、フラットバンドに対して高エネルギー側の 観察も可能になった。これは、基板効果が TBG の 電子状態を変調する手法としても非常に重要である ことを示唆している。

4. まとめ

近年、2 次元物質におけるツイストロニクスの研 究が盛んに行われている。これは、グラフェンを含 む2次元物質を積層する際に、ツイスト角を新たな 自由度として利用する技術である。大面積のツイス ト2層グラフェン試料の作製方法が確立され、その 電子状態が明らかになったことにより、ツイストロ ニクスの実現に一歩近づいたと言える。

謝辞

本研究は、研究実施当時名古屋大学大学院生の佐藤京樹氏(現ローム株式会社)、林直輝氏、名古屋 大学シンクロトロン光研究センター伊藤孝寛准教授、 ローム株式会社眞砂紀之博士、高村誠博士、森本満 博士、前川拓滋博士、米国マサチューセッツ工科大 学 Doyoon Lee 氏、Kuan Qiao 氏、Jeehwan Kim 准教授、関西学院大学中川原圭祐氏、若林克法教授、 日比野浩樹教授との共同研究として実施された。

参考文献

[1] J. M. B. Lopes dos Santos, et al., *Phys. Rev. Lett.*

99, 256802 (2007).

[2] Y. Cao, et al., Nature 556, 43 (2018).

- [3] S. Lisi, et al., Nature Phys. 17, 189 (2021).
- [4] M. I. B. Utama, et al., *Nature Phys.* **17**, 184 (2021).
- [5] J. Kim, et al., *Science* **342**, 833 (2013).
- [6] K. Sato, et al., Commun. Mater. 2, 117 (2021).
- [7] M. Kusunoki, et al., J. Phys. Soc. Jpn. 84, 121014 (2015).

[8] J. Ristein, et al., *Phys. Rev. Lett.* 108, 246104 (2012).

シンクロトロン光による熱処理木材の細胞壁中セルロースの力学挙動解析 森林総合研究所 小島瑛里奈

1. はじめに

我が国には寺社仏閣をはじめとする伝統 的な木造建築群が存在している。これらの 多くは建立当時の様子を現代に伝えており、 世界に誇る文化的財産である。このような 長期間に亘る構造的利用により、部材であ る木材の材質は変化(古材化)することが分 かっている。これに伴う力学的な性能の変 化は、構造物の安全性の観点から大きな関 心事ではあるが、これに関するメカニズム は未だに不明な点が多い。これについて、木 材に熱処理を施すと、古材化と似た材質の 変化を示すため、古材化のメカニズムの解 明を目的とした熱処理木材の材質および力 学研究は数多い[1]。

ここで、木材は複雑な階層構造を有して いる。すなわち、木材は一年の間で成長速度 の異なる細胞(早材と晩材)から成る年輪構 造があり、これらの細胞は、表層に薄く形成 された1次壁(P層)と、肥大生長によっ て形成した2次壁から成る。さらに2次壁 は外層から S1 層、S2 層、S3 層の 3 層で成 り立っている。また、それぞれの層はセルロ ース、ヘミセルロース、リグニンの3つの 主成分から成る。このようなミクロからマ クロに至る構造の組み合わせにより、木材 の力学性能は発現している。木材の経年変 化に伴う力学的な変化のメカニズムを解明 するためには、それぞれの組織構造を横断 し、木材の巨視的な挙動と微視的な挙動の 両者を結びつけ理解していく必要がある。

従来の木材の微視的な挙動、すなわち細

胞壁の力学挙動測定には、木材の有する階 層的な組織構造を取り除いた、薄片試験体 を対象とした X 線測定が行われていた[2]。 しかしながら木材の力学挙動を読み解いて いくためには、すべての階層構造(年輪構 造)を有した状態での内部の力学挙動を把 握する必要がある。このような課題に対し て、強力な光源を持つシンクロトロン光に よる X 線回折では分厚い試験体でも測定が 可能となる。

本稿では、疑似古材化処理として熱処理 を施した複数年輪を有する木材を対象に、 引張負荷作用下でシンクロトロン光による XRD 測定を行うことで、木材内部の微視的 な挙動を測定した事例を紹介する[3]。

2. 実験方法

2-1 材料

供試材はアカマツ (Pinus densiflora)で、 試験片の形状は木材の繊維方向を長軸とす るダンベル型で、寸法は長さ (繊維方向)60 mm、幅 (半径方向または接線方向)10 mm、 厚さ (接線方向または半径方向)5 mmで、 中央部の断面寸法が5 mm x5 mm となる ようにテーパーを施した。熱処理は、古材化 と同様に細胞壁内のマトリクスとセルロー スの結合要素であるヘミセルロースが減少 する150℃と、ヘミセルロースに加え細胞 壁内の唯一の鎖要素であるセルロースも分 解する180℃との2種類を設定した。処理 時間は重量減少率 (以降、MLと称す)を基 準に各3段階である。Table1に処理条件 をまとめた。

Temperature	Mass	n	Modification
	loss		time
(°C)	(%)		(Hour)
0	0	4	0
	3	3	58
150	4	4	154
	6	4	259
	3	3	3
180	4	3	6
	18	3	90

Table 1 Thermal modification condition.

n: number of specimen

2-2 XRD 測定と引張試験

XRD 測定はあいちシンクロトロン光セ ンターBL8S1 で行った。測定した Bragg 角 はセルロース (004) 面 (約 $d_{004}=2.59$ Å[4]) に対応する 26.5°~35°である。本稿では 繊維方向とほぼ平行に配向している S2 層 内のセルロースの挙動を調べるために透過 法を用いた。引張負荷作用下で XRD 測定を 行うために、XRD 測定装置のステージの中 央に自作の負荷治具を設置した。この冶具 に試験片を取り付け、試験片の材軸方向(す なわち、木材の巨視的な繊維方向)と平行に 引張負荷を与えた。試験片が破壊に至るま で、4~10回の段階的な引張負荷を与えな がら、都度 XRD 測定(1回につき 330 秒) を行った。S2層内のセルロースに作用する 荷重について、セルロースは材軸に対して 若干傾斜しているため木材バルクにかかっ た引張荷重の方向と一致しない。そこで、セ ルロースに作用する引張荷重を、材軸を基 準とするセルロースの配向角への分力とし て求めた。次に、セルロースの引張ひずみは セルロース (004) 面の面間隔 doo4 の変化率 $\Delta d/d_0$ (d_0 : 無負荷時の面間隔 d_{004} ; Δd : d_0 と負荷時の面間隔 doo4 の差異) で定義でき

る。 d_{004} は Bragg の法則に基づき解析した。 以上のようにして求めたセルロース荷重と、 セルロースひずみ $\Delta d' d_0$ から、セルロースの 荷重-ひずみ関係を解析した。

さらに、試験片の巨視的(以降、木材バル クと称す)な力学挙動を確認するため、試験 片中央にひずみゲージを貼付した。負荷治 具に取り付けたロードセルからの荷重とひ ずみゲージの値はデータロガーを介して記 録した。木材バルクの荷重-ひずみ関係は これらのデータから解析した。

3. 結果と考察

引張荷重下での XRD 測定により得られた、S2 層内セルロースおよびその時の木材バルクの荷重-ひずみ曲線を Fig. 1 に示す。ここでは例として 150℃熱処理を施した場合の典型的な荷重-ひずみ曲線を示した。

(a) 木材バルク (b) セルロース

はじめに無処理の場合(●プロット)につい て、木材バルクの挙動は線形挙動を示した のに対し、セルロースは概ね線形挙動を示 したものの、木材バルクの挙動とは必ずし も一致せず、セルロースのひずみの方が小 さいことがわかる。150℃の熱処理を施した 場合、すべての条件で木材バルクとセルロ ース共に最大荷重の減少が認められた。一 方、最大ひずみでは木材バルクとセルロー スの傾向が異なり、セルロースでは熱処理 により最大ひずみが増加し、MLによる違 いは認められなかった。

ここで、熱処理が木材バルクとセルロー スの力学性能に及ぼす影響を調べるために、 最大荷重と最大ひずみについて、木材バル クに対するセルロースの比率を調べた。以 降、最大荷重比、最大ひずみ比と称す。はじ めに、最大荷重比を熱処理条件ごとに Fig.2 に示す。無処理の場合は、ほぼ1に近い値を 示し、木材バルクの破断の直前までセルロ ースは引張挙動を示していたことがわかる。 なお、S2 層セルロースに作用する荷重は、 セルロースの配向方向 (MFA≒9.0°) への 分力として評価しているため、木材バルク とセルロースに作用した荷重の比は約 0.988 である。熱処理の ML 3%および 4% では、両温度とも無処理と同様に最大荷重 比は1に近い値を示した。したがって、こ れらの条件下における熱処理が木材バルク とセルロースの最大荷重に及ぼす影響はほ とんど同程度であったと考えられる。一方、 150 ℃ 熱処理 ML 6%および 180 ℃ 熱処理 ML 18%の最大荷重比は無処理に対して明 らかに低下し、それぞれ 0.87、0.17 であっ た。特に、180 ℃ 熱処理 ML 18%の最大荷 重比の低下が顕著である。現象としては、セ

Fig. 2 最大荷重比([3]を改変)

ルロースの引張挙動(荷重の増加に伴いひ ずみが増加する)が止まった後(最大ひずみ 後)も木材バルクの荷重はさらに上昇を続 け、破断するまで耐えたことが考えられる。

次に、最大ひずみ比を熱処理条件ごとに Fig. 3 に示す。グラフより無処理の場合セ ルロースの最大ひずみは木材バルクのそれ のおよそ 0.5 倍である。150 ℃ 熱処理では 無処理と比較して、ML に比例して最大ひ ずみ比が増加する傾向となった。特に ML 6%ではおよそ 0.9 倍となり、セルロースは 木材バルクと同程度まで伸長していること がわかる。次に、180 ℃ 熱処理材では、ML 3%および 4%の最大ひずみ比は、150℃ 熱 処理の同じML と同程度であるが、ML 18% では低下し、最大ひずみ比はおよそ 0.4 倍

Fig. 3 最大ひずみ比([3]を改変)

となった。すなわち、熱処理が最大ひずみ比 に及ぼす影響は温度で異なることが明らか になった。このことから、セルロース自身が 分解する 180℃ 熱処理だけでなく、セルロ ースと細胞壁のマトリクスの結合要素であ るへミセルロースの熱分解によっても、細 胞壁中のセルロースの挙動は変化すること が示された。

4. まとめ

疑似古材化処理として熱処理(150℃およ び 180℃) を施した木材を対象に、引張負荷 作用下で XRD 測定を行い、細胞壁 S2 層内 のセルロースの挙動と木材バルクの挙動を 比較した。その結果、両温度条件において熱 処理による重量減少率が大きい場合には、 木材バルクよりも先に内部のセルロースは 引張挙動を示さなくなる場合があることが わかった。また、150℃の熱処理では最大ひ ずみ比は増加傾向を、180℃の熱処理では減 少傾向を示した。この違いは主にセルロー スとマトリクスの結合要素であるヘミセル ロースが分解されたか、あるいはセルロー ス自身が分解されたかの違いによると推察 された。特にヘミセルロースの減少は木材 の古材化の中で顕著な変化の一つである。 建築解体材などから供試材を得ることで、 熱処理木材と古材を比較し、古材化の力学 的メカニズムの解明につなげたい。

謝辞

本研究の実験はあいちシンクロトロン光 センターの BL8S1 で実施した。ご協力いた だいた関係者の皆様には謝意を表する。

参考文献

[1] 例えば K. Endo et al., "Effects of heating humidity on the physical properties of hydrothermally treated spruce wood", Wood Sci. Technol. 50:1161-1179 (2016).

[2] 例えば N. Sobue et al., "On the measurement of strain distribution in wood under the axial tension force by X-ray diffraction", Zairyo 20:1188-1193 (1971).

[3] Kojima, E et al., "Effects of thermal modification on the mechanical properties of the wood cell wall of soft wood: behavior of S2 cellulose microfibrils under tensile loading", J. Mater. Sci. 55: 5038–5047 (2020).

[4] F. Tanaka et al., "Orientation distribution of cellulose crystallites in woody plants. Part I.: Pole-figures and orientation functions of cellulose crystallites in opposite wood of *Pinus densiflora*", Wood Res. Bull. Wood Res. Inst. Kyoto Univ. 66:17–22 (1980).

リチウムイオン電池正極材料 Li(Ni1/3Co1/3Mn1/3)O2の劣化解析

a(公財)科学技術交流財団 あいちシンクロトロン光センター、

^bプライムアース EV エナジー株式会社、。立命館大学SRセンター

永見哲夫 ª、野本豊和 ª,⁺、杉山陽栄 ª、立木翔治 ª,⁺、坂本廉 b、太田俊明 ^{a、 c}

(この記事は右記論文を一部修正した内容である Electrochemistry, 89(4), 363-369 (2021))

1. はじめに

エネルギー資源の枯渇、地球温暖化が重要な課 題になってきた昨今、二次電池への需要はますま す高まりつつある。二次電池は正極に LiCoO₂ を 用いたリチウムイオン電池 (LIB) が開発されて 飛躍的な進歩を遂げ、それに伴ってLIBの高性能 化に向けた研究が産官学を問わず盛んになった。 高価で有毒な Co を Ni や Mn に置き換えた Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂が実用化されたが¹、これら Li、 MnあるいはNiの組成を変えたり、他の元素 を導入することで、さらに高いエネルギー密度を 持つ電池材料の開発が元素戦略的に進められてい る。

二次電池の高性能化とは、エネルギー密度が高 いことはもちろんであるが、サイクル特性が良い こと、安全でしかも、廉価であることも実用電池 として重要になる。長寿命で利用出来る電池開発 のために、新材料の開発と並行して、電池の劣化 解析の研究も数多くされている。しかし、電池材 料は複雑な系であり、同じ正極材料でもその粒径 や導電助剤、電解液の種類、充放電過程における カットオフ電圧(充電率)、充放電レート、温度 など様々な要因によって劣化の仕方も異なってい る2。解析の手法も様々であり、その結果として、 いろいろな劣化状態が報告されている。代表的な ものとしては、劣化とともに電極表面の構造が変 化したり3,4、副生成物が堆積することによるもの 5.6、酸素離脱が起こり、NiがLi層に不可逆的に入 り込んでしまう7,8、などが挙げられる。

ここでは、最も一般的と思われる正極材料 Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂(以下NCMと呼ぶ)を用い た系を対象にして、できるだけマイルドな条件の もとでサイクル耐久品、保存耐久品を作製し、こ れらについて耐久に伴う化学状態変化、結晶構造 変化を軟X線吸収分光(XAS)、X線粉末回折(XRD) によって調べた結果について報告する。そして、 これまでの劣化解析報告との比較検討を行う。

2. 試料の作製と評価法

2-1. 耐久試験用電池試料の作製

正極活物質NCM粉末に導電助剤アセチレンブ ラック(以下AB)、結着剤PVDF(PolyVinylidene DiFluoride)を混合したペーストをアルミニウム 箔に塗布して乾燥させたものを正極板として用い た。負極板は炭素粉末と結着剤を混合したペース トを銅板上に塗布したものであり、セパレータと $\cup \subset PP(Polypropyrene)/PE(Polyethylene)/PP O$ 3層構造微多孔性有機薄膜を用い、これらを電池 ケースに挿入した。これに電解液としてLiPF6/エ チレンカーボネート(EC)/エチルメチルカーボネ ート(EMC)/ジメチルカーボネート(DMC)混合溶 液を注入して密封し試験用電池とした。耐久試験 用に2 種類の電池を用意した。 サイクル耐久品 は、85°C、充放電レート2C/2C、カットオフ電圧 3.0-4.1V/セルで250、500および1000サイクル充 放電を行ったものである。保存耐久品は、3.7、4.0 および4.1V/セルに充電後70°C、150日間保存し たものであり、これらの充電状態(State of Charge、 SOC)はそれぞれ60、90、100%に対応している。 耐久試験後の電池セルを分解し、リチウムを負極 とするハーフセルを作製後SOC 0%品(放電状態)、 およびSOC 100%品(充電品)に調整した。これ らをグローブボックス中で分解して正極部分を取 り出し、EMCへの浸漬10分を2回繰り返して付着 した電解液を除去した。

† 現 あいち産業科学技術総合センター

2-2. 評価実験

(1) 正極の容量劣化測定

初期品(電池を作製後、コンディショニングと して数サイクルの充放電を実施、以後0 cycleとも 呼ぶ)、および、耐久品について、容量劣化率を 調査した。実験には、初期品または耐久品の正極 を作用極、金属リチウムを対極、参照極とし、 LiPF₆/EC/EMC/DMCを電解液としたビーカーセ ルを作製した。周囲温度25 °C、充放電レート 0.2C/0.2C、カットオフ電圧を3.0-4.3V/セルとし て3サイクル実施し、それぞれの充放電曲線を測 定した。そして、3サイクル目の容量値より容量劣 化率を求めた。

(2) 二次粒子のSEM観察

電池劣化における二次粒子の状態を観察する ために、初期品、4.1V/セル充電後に150日間保存 した耐久品、および、1000サイクル通電耐久品の 放電時の試料について、走査型電子顕微鏡装置(日 立ハイテクSU8030)を用い、加速電圧3.0 kVにて 正極切断面のSEM観察を行った。

(3) X R D 測定

XRDは、あいちシンクロトロン光センター BL5S2にて行った。実験は、常温大気下で、入射 エネルギー18 keV、測定範囲を3~95°にした。試 料はすべて放電状態(SOC 0%)のものであり、正極 からかき取った粉末を内径0.2mmのリンデンマ ンガラス製キャピラリィに充填し封止したものを 用いた。得られた結果に対して、層状岩塩型 hexagonal構造を仮定してリートベルト解析を実 施し、a軸、c軸の長さ、およびその比を求めた。 なお、充電状態での測定も試みたが、解析に耐え うる満足なデータは得られなかった。

(4)軟X線XAS測定

Mn、Co、NiL端XAS、およびC、O、FK端XAS スペクトルの測定は、あいちシンクロトロン光セ ンターBL1N2軟X線分光ビームラインにて行っ た。測定対象元素の吸収端が近く、バックグラン ド評価の曖昧さを避けるため、1スペクトル中に 隣り合う元素のスペクトルを複数含む測定方法を 採用した。試料は、グローブボックス内で正極試 料を切り出したものを大気非暴露のまま測定チェ ンバーに導入した。測定には表面敏感な全電子収 量(TEY)法を用い、バルク敏感な部分蛍光収量 (PFY)法も併用した。

3. 結果と考察

3-1. 容量劣化

Figure 1(a)にサイクル耐久品、(b)に保存耐久品 の充放電曲線を示した。また、Table 1に容量とそ の劣化率を示す。サイクル耐久品においては、サ イクル数の増加と共に容量劣化が進行し、その変 化の度合いは対数的であることが確認された。こ れに対して、保存耐久品の場合、変化の度合いは 指数的で、保存時の電圧が4.0V/セルからわずか 0.1V/セル増加すると劣化率は2倍に上昇する。カ ットオフ電圧が4.0V/セルを超えると急激に増加 しており、4.1V/セルまで上げて保存することが劣 化の大きな要因であることを示している。

Figure 1. Charge/discharge profiles of the cells for (a) cycle test and for (b) the storage test.

 Table 1. Capacity and deterioration rate after cycle and storage tests

	Capacity	Deterioration rate
Cycle test		
0 cycle	153.60 mAh/g	0 %
250	129.96	15
500	108.20	30
1000	98.58	36
 Storage test 		
3.7 V	148.86 mAh/g	3 %
4.0	140.26	9
4.1	126.41	18

3-2. 形態変化

Figure 2にNCM二次粒子断面のSEM観察結果 を示す。すべての写真に観測される縦筋は研磨傷 によるものである。初期品は二次粒子が緻密に集 合しており、粒界を認識し難い部位が随所に見ら れる。4.1V/セル充電保存耐久品の状態は初期品に 近いが、粒界に間隙が生じ始めている部位が存在 した。一方、1000サイクル耐久後の試料では二次 粒子間に0.1µm弱のクラックが全面に発生してい た。サイクル耐久品では充放電が繰り返される。 NCMは充電に伴ってa軸は収縮し、c軸は伸長し、 放電時には可逆的にもとに戻ることが知られてい る⁸。しかし、充放電が繰り返されるとやがて粒界 に歪が生じ、クラック発生に至ったと思われ、こ れが容量劣化に大きく効いていると考えられる。

3-3. 結晶構造変化

NCMは層状岩塩型でhexagonal構造をしてお り、上述のように充放電によってa軸とc軸の長さ が可逆的に変化する。ここで得られた結果は放電 時のものだけであるが、1000 cycle耐久品のXRD パターンとリートベルト解析によるシミュレーシ ョンの結果をFig. 3に示した。Rwp値は初期品で 5.8%、劣化が進むにつれて大きくなり1000 cycle 耐久品で7.2%までになり、劣化によって構造の乱 れが増えていくことを反映している。解析の結果 得られたa軸長、c軸長、およびc軸長/a軸長を容量 劣化率に対してプロットしたものをFig. 4に示し た。サイクル数が増加するほど、また保存時の充

Figure 2. SEM images of the NCM secondary particles. (a) 0 cycle, (b) after storage for 150 days at 4.1 V/cell, and (c) after 1000 cycle test.

電度が高いほどa軸がわずかに短くなり、c軸が長 くなる傾向が得られた。劣化によって正極表面が スピネル構造に相変化するという報告があるが^{3,4}、 スピネル相LiNi₂O₄の回折パターンはNCMとほ ぼ一致しているために、それを見分ることはでき なかった。

Figure 3. Powder X-ray diffraction pattern (blue dots) and Rietveld simulation (red line) of the NCM cathode at 1000 cycle.

Figure 4. Crystal structural parameters of NCM positive electrode at discharged state (SOC 0%) plotted against capacity deterioration rate. Upper and middle plots are a and c axis lengths in Å unit, and bottom plots are the ratio of c to a axis lengths.

3-4. 化学状態変化

(1) 遷移金属 L 端 X A S

Figure 5(a)に、初期およびサイクル耐久品、(b) に保存耐久品のそれぞれSOC 0%(放電品)、100% 品(充電品)のTEYモードで測定したNi La端XAS スペクトルを示した。標準スペクトルとして、Ni²⁺ はNiOと初期品(0サイクル)、Ni³⁺、Ni⁴⁺につい てはそれぞれLiNiO₂、NiO₂のEELSスペクトル⁹ を併せて載せた。

初期品、SOC 0%は853 eVに主ピークを持ち、 Ni²⁺であることを示す。これに対してSOC 100% では855 eVに主ピークが移る。この変化は充電に よってNiがNi²⁺からNi³⁺、Ni⁴⁺へと酸化され電荷 補償を担っていることを意味する。Kubobuchiら は理論計算とTEYスペクトルの比較から、4.3V/セ ル印加時のNi価数は約3.4に相当すると報告して いる10。サイクル数の増加とともに、充電時に大き なスペクトル変化は観測されないが、放電時に高 エネルギー側の肩が増えていく傾向があり、劣化 が進むにつれて、放電してもNi²⁺まで完全に戻ら なくなることを示している。一方、保存劣化では、 保存開始時の電位が4.0V/セルを超えると、充電に よってNi4+まで行き切れず、サイクル劣化の場合 と顕著な違いを示している。これらNiL₃スペクト ルを、初期品(0サイクル)、LiNiO₂、NiO₂のス ペクトルの重ね合わせとして線形結合解析を行っ た。ここで、LiNiO2、NiO2の標準スペクトルは分 解能が悪くてこのままでは解析できないため、ピ ーク位置を合わせてガウス関数でフィッティング したスペクトルを用いた。これから各試料のNi平 均価数を求め、容量劣化率に対してプロットした ものがFig.6である。放電時の傾向は、サイクル劣 化、保存劣化を問わず容量劣化率の増加と共に平

Figure 5. Ni L_3 -edge absorption spectra of NCM positive electrodes after cycle test (a) and storage test (b). Upper spectra are at charged state (SOC 100%), middle spectra are at discharged state (SOC 0%) and bottom spectra are those from references, NiO (blue), LiNiO₂ (purple) and NiO₂ (light blue). The spectra from LiNiO₂ and NiO₂ are reproduced from Fig. 6 of ref. 9, where the energy is shifted by -0.93 eV so as to fit the spectrum of NiO to ours.

均価数の増加が見られる。充電時では、サイクル 劣化では殆ど価数の変化がなく、保存劣化でNi価 数の減少がみられる。解析で得られた充電時の平 均価数は3.39であった。なお、バルク状態を反映 したPFY法によるスペクトルは、自己吸収効果の ため定量的な解析は難しいものの、充電時の平均 価数はTEY法に比べ高い傾向を示していた。

Figure 6. Ni mean valences at charged (SOC 100%) and discharged (SOC 0%) states plotted against capacity deterioration rate. Each valence was obtained by the linear combination fitting of the spectra in Fig. 5.

Coに関しては、Tsaiらがin situ Co K端XASの 測定解析を行っており、3.0V/セルから4.5V/セル までの充電によってK端エネルギーのシフトが観 測されなかったことから、Coは充放電に寄与して いないという結果を報告している¹¹。Figure 7に Co L3端XASスペクトルを示した。Mizokawaら¹² は、LiCoO2から化学的にLiを引き抜いていった単 結晶試料のCo L端スペクトルを測定し、Co³⁺から Co4+へ変化するにつれて主ピークが高エネルギー 側にシフトし、同時に低エネルギー側に肩が現れ てくることを報告している。彼らの結果を標準ス ペクトルとして併せて載せた。今回得られた結果 では、充電によって主ピークが0.3 eVだけ高エネ ルギーにシフトすることが観察された。 MizokawaらによるCo³⁺からCo^{3.75+}へのシフト量 から本実験での充電時のCoの価数を見積もると、 約3.3になった。ただ、酸化によって現れる低エネ ルギー側のサテライトは顕著には現れず、これは 今回の試料が粉末試料であり、偏光特性が平均化 されたことが原因と考えた。Coが電荷補償に寄与 しているという報告は、Kobayashi¹³やYoonら¹⁴ によってもなされている。しかし、サイクル劣化、 保存劣化によって、わずかにサテライトの増加が みられるものの、顕著な変化は観測されずCoは劣 化には関係ないといえる。

なお、Mn L₃端XASスペクトルの図は載せてい ないが、充放電によってピーク位置や形状に変化 は認められず、Mnは電荷補償には関与していな いというこれまでの報告と一致している。また、 耐久試験によってスペクトル変化は見られなかっ たことから、Mnに関しては、サイクル劣化、保存 劣化は起こっていないと考えられる。

Figure 7. Co L_3 -edge absorption spectra of NCM positive electrodes after cycle test (a) and storage test (b). Upper spectra are at charged state (SOC 100 %), middle spectra are at discharged state (SOC 0 %) and bottom spectra are those from LiCoO₂ and Li_{0.25}CoO₂, reproduced from Fig. 4 of ref. 12, where the photon energy is shifted by +1.3 eV so as to fit the spectrum of LiCoO₂ to ours.

(2) O、C、F K端XAS

Figure 8(a)、(b)に保存耐久品、サイクル耐久品 のTEY法、PFY法によって得られた放電時のOK 端XASプリエッジ領域のスペクトルを示した。こ の領域に現れるのはNi²⁺、Co³⁺、Mn⁴⁺イオンがO と共有結合することによって生じるO 2pバンド の空孔状態への遷移に対応している。バルクをプ ローブするPFYスペクトルでは保存劣化、サイク ル劣化どちらも大きな変化を示さず、その形状は 初期品(0サイクル)、さらには未処理品15とも殆 ど一致している。ピークAはNi²⁺(eg)-O、および Co³⁺(eg)-O 混成軌道への遷移、ピークBは Mn4+(t2g)-O混成軌道への遷移に帰属される15。こ れに対して、表面敏感なTEYスペクトルでは、ピ ークBが初期品ですでに顕著に増大している。こ れは充放電処理によって正極表面に何らかの状態 変化が起きていることを意味する。このピークB に関しては、Shikanoらが理論計算も併せて行い、 立方晶スピネル構造内のNi-O軌道への遷移に帰 属している¹⁶。すなわち、TEYスペクトルにおけ るピークBの増加分は表面に生成した立方晶スピ ネル構造によることを示している。Figure 8に示 したスペクトルはエッジジャンプで規格したもの であるが、酸素含有付着物の多寡によってプリエ ッジピーク強度が変化する。そこで、TEYスペク

トルにおいてピークAに対するピークBの増加分 の変化を調べることで、容量劣化によるスピネル 構造の生成度合いを求めた。結果をFig. 11(a)に示 したが、サイクル劣化に関しては初期品からあま り変化がないのに対して、保存劣化では約2倍の スピネル相の生成が見られ、保存開始時の電位に よって増加する傾向を示している。

Figure 9には保存耐久品とサイクル耐久品との 放電時のCK端XASのTEYスペクトルを示した。 本電池材料の炭素成分は導電助剤であるABと結 着剤であるPVDFが主と考えられ、ピークA1 (285.6 eV)、A3 (293 eV)はABの π*遷移、σ*遷移 に、ピークA2 (292 eV)、A4 (294.7 eV)はPVDFの C-F結合に由来する π *、 σ *遷移に帰属できる¹⁷。 合剤電極を作製することによって新たに生じたピ ークB2(288.5 eV)、B3 (290.4 eV)はそれぞれカル ボン酸化合物18と炭酸塩19によるものと帰属でき る。これらのピークは初期品でも既に現れている が、劣化によって次第に増大していく。保存劣化 の試料では、これらのピークがより強く観測され、 286.4 eVにも新たにカルボニル化合物18に帰属さ れるピークB1が肩構造として現れる。このように、 電解液の分解生成物が次第に正極表面に堆積して いく様子がみえるが、ピークA1に対するピーク B2の強度比が劣化によってどのように変化する

Figure 8. O K-edge absorption spectra of NCM positive electrodes at SOC 0% obtained with the TEY mode (a) and PFY mode (b). Upper and middle spectra are after storage test and cycle test, respectively. Bottom spectrum is from 0 cycle.

かを調べたのがFig. 11(b)である。保存劣化の方が 約2倍大きく、劣化と共に増えていく傾向を示し ている。

Figure 10にF K端XASのTEYスペクトルの例 を載せたが、これらはすべてPVDFとLiFの重ね合 わせで満足に再現されることが分かった。PVDF は電池組み立て時から存在し、耐久試験によって もその量は変わらないが、LiFは電解液の分解に よって生じたものと考えられる。そこで、PVDF を基準にしたLiFの存在量を求めた。容量劣化度 にたいして放電時の試料の値をプロットしたもの がFig. 11(c)である。大きな化学変化によってばら つきの大きい0サイクルの試料を除けば容量劣化 とともにLiF量が増大する傾向を示しており、サ イクル劣化、保存劣化どちらにおいてもLiFの表 面への堆積増加が電池劣化と密接な関係にあるこ とを示唆している。

3-5. 劣化挙動の考察

電池材料を化学変化の立場から見ると、未処理 品から最初に充放電することによって(ここでは 0サイクルに対応)大きな変化が引き起こされる。 そして、充放電の繰り返し、充電状態での長期保 存によって次第に構造変化が起こり、容量が低下 していく。上述したように、容量劣化の機構は複 雑であり、電池の組成など内的条件とカットオフ 電圧や充放電レート、温度など様々な外的条件に よって異なってくる。Ikedaらは、長期高温保存品 の走査透過型電子顕微鏡観測によって、層状岩塩 型構造をしたNCM活物質の表面に数nmの厚さの 立方晶スピネル構造が生成することを報告してお り、それによって界面抵抗が増大することが劣化 の原因であるとしている4。一方、Linらは、初期 数十サイクル充放電をした試料での電子顕微鏡観 察から、同様に2nm厚さの立方晶スピネル構造の 生成を観測している3。このことは、初期充放電段 階においてもすでに表面に大きな構造変化を生じ ていることを示唆している。

本実験では、できるだけマイルドな環境下での

Figure 9. C K-edge absorption spectra of NCM positive electrodes at SOC 0%. Upper and middle spectra are after storage test and cycle test. Bottom spectrum is from 0 cycle.

Figure 10. Spectral analysis of the F *K*-edge absorption spectrum from NCM positive electrode at 0 cycle, SOC 0%. The spectrum is well reproduced by linear combination of the spectra from 59% of PVDF and 41% of LiF.

Figure 11. Upper figure is the plots of $I_{spinel}/I_{peak A}$ in O K XAS (a), middle is of I_{ads}/I_{bulk} in C K XAS (b) and bottom is of I_{LiF}/I_{PVDF} (c) against capacity deterioration rate.

劣化機構の解明を目指したものであり、カットオ フ電圧を3.0-4.1V/セルにしたことから、充放電を 担うのはNiイオンと一部のCoイオンだけであっ た。ただし、常温での劣化はあまりにも長時間を 要することから、保持温度を85°C(サイクル劣化)、 70°C(保存劣化)にした。このことは、電解液の 分解、堆積がより起こり易い環境下での劣化現象 であることは否めない。今回の容量評価において は耐久試験後の電池を分解し、Liを負極とするハ ーフセルを作製してSOC調整を実施しているの で、負極からのLi供給が制約されることはない。 そのような条件下、Fig. 6に示した劣化の進行と Ni平均価数との関係からも分かるとおり、放電時 のNi平均価数は、保存劣化もサイクル劣化も同じ 傾向を示し、容量劣化率とほぼ比例関係にある。 これは、Fig.4に示したXRD解析によるc軸長/a軸 長比と容量劣化率に対する傾向とも一致している。 このことは劣化が進むにつれて、しだいに完全な 放電状態にまで戻りにくくなることを意味する。 換言すれば、正極側でなんらかのLiイオン伝導阻 害が生じていると考えられる。Ikedaらも長期高 温保存劣化の実験で同様の結果を得ている4。今回、 我々は充電保存劣化とサイクル劣化の2種類の劣 化実験を行い、両者とも類似した劣化の振る舞い を示したが、SEM像やO、 CK端XASの結果は両 者で劣化の要因が異なっていることを示唆してい る。

サイクル耐久品では充放電が繰り返されること になる。正極のNCMは充電に伴ってa軸は収縮し、 c軸は伸長し、放電時には可逆的にもとに戻る。し かし、充放電が繰り返されるとやがて粒界に歪が 生じ、クラックが発生する。Figure 2のSEM像に 示したように1000サイクル後のNCM二次粒子に 顕著なクラックの発生が見られる。その結果、Li イオン伝導パスが寸断され、孤立したNCM粒子が 発生することが主な要因となって、放電時に負極 から正極にLiイオンが戻りにくくなったと考えら れる。

これに対して、保存耐久品では充放電は行われ ないので二次粒子の膨張収縮がなくマイクロクラ ックは殆ど生じていなかった。ところが、**O**、**C** K端XASの結果から、表面スピネル相、正極表面 堆積層がサイクル耐久品より2倍以上ある。これ らの正極表面の相変化や堆積層の増加が主なイオ ン伝導阻害の要因になっていると考えられる。

4. 結論

NCMを正極とした代表的なリチウム電池につ いて、サイクル劣化と長期充電保存劣化の振る舞 いをXAS、XRD、SEMを用いて調べた。その結果、 カットオフ電圧3.0~4.1V/セルで充放電を担うの はNiと一部のCoだけであり、Niだけに劣化による 化学変化が見られた。サイクル劣化と保存劣化に おいて、放電状態に関しては、どちらも容量劣化 率に換算したとき、Ni平均価数、格子定数比c/aと 正の比例関係にあり、容量劣化と共に放電時に充 電状態がより多く残ることを示していた。この要 因として、NCM粒子間のマイクロクラックが大き くなり、粒子表面にスピネル相が生成し、電解液 分解生成物が次第に堆積していき、リチウム伝導 パスを阻害していくことが明らかになった。特に、 サイクル劣化ではマイクロクラックの生成が顕著 であるのに対して、保存劣化では正極表面 のスピネル相生成が顕著にみられた。

参考文献

1. T. Ohzuku and Y. Makimura, Chem. Lett., 30, 642 (2001).

2. (国)科学技術振興機構低炭素社会戦略センター, 調査報告書「リチウムイオン電池の劣化挙動調査」 (2020).

3. F. Lin, M. Markus, D. Nordlund, T.-S. Weng,M. D. Asta, H. L. Xin, and M. M. Doeff, Nat.Commun., 5, 3529 (2014).

4. Y. Ikeda, Y. Tao, R. Kido, M. Masuda, T. Yamafuku, S. Mori, T. Sasaki, and T. Inamasu, GS Yuasa Technical report, 13, page 1 (2016).

 S. Hashigami, K. Yoshimi, Y. Kato, H. Yoshida, T. Inagaki, M. Tatematsu, H. Deguchi, M. Hashinokuchi, T. Doi, and M. Inaba, Electrochemistry, 87, 357 (2019).

6. T. Liu, A. Garsuch, F. Chesneau, and B. L. Lucht, J. Power Sources, 269, 920 (2014).

7. Z. H. Lu and J. R. Dahn, J. Electrochem. Soc., 149, A815 (2002).

8. N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, and S. Komaba, J. Am. Chem. Soc., 133, 4404 (2011).

9. Y. Koyama, T. Mizoguchi, H. Ikeno, and I. Tanaka, J. Phys. Chem. B, 109, 10749 (2005).

K. Kubobuchi, M. Mogi, M. Matsumoto, T.
 Baba, C. Yogi, C. Sato, T. Yamamoto, T.
 Mizoguchi, and H. Imai, J. Appl. Phys., 120, 142125 (2016).

11. Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu, and J. F. Lee, Chem. Mater., 17, 3191 (2005).

12. T. Mizokawa, Y. Wakisaka, T. Sudayama, C.Iwai, K. Miyoshi, J. Takeuchi, H. Wadati, D. G.Hawthorn, T. Z. Regier, and G. A. Sawatzky,Phys. Rev. Lett., 111, 056404 (2013).

13. H. Kobayashi, J. Power Sources, 146, 640 (2005).

14. W.-S. Yoon, M. Balasubramanian, K. Y. Chung, X.-Q. Yang, J. McBreen, C. P. Grey, and D. A. Fischer, J. Am. Chem. Soc., 127, 17479 (2005).

15. M. G. Kim, H. J. Shin, J.-H. Kim, S.-H. Park, and Y.-K. Sun, J. Electrochem. Soc., 152, A1320 (2005).

M. Shikano, H. Kobayashi, S. Koike, H. Sakebe, Y. Saito, H. Hori, H. Kageyama, and K. Tatsumi, J. Power Sources, 196, 6881 (2011).

17. T. Ohta, K. Seki, T. Yokoyama, I. Morisada, and K. Edamatsu, Phys. Scr., 41, 150 (1990).

O. Dhez, H. Ade, and S. G. Urquhart, J. Electron Spectrosc. Relat. Phenom., 128, 85 (2003).

19. J. A. Brandes, S. Wirick, and C. Jacobsen, J. Synchrotron Radiat., 17, 676 (2010).

3. 研究開発の状況

3 研究開発の状況

- 3.1 研究開発
- (1) 光源加速器

① ビーム損失による放射線測定系の開発

蓄積ビームの損失による放射線を加速器全体にわ たって計測し、その分布を可視化できれば、より安 全な放射線遮蔽はもとより、加速器運転の効率化に つながる。多点計測による放射線分布の測定システ ムを構築するために、半導体検出器を用いた小型か つ安価なビームロス測定器の開発を行った。

検出器は荷電粒子放射線によるフォトダイオード のチャージアップを出力する Bergoz 社のビームロ スモニタを使用する。検出器の信号計数は、パルス カウント機能をもち無線で計数値を出力できるマイ クロコンピュータ ESP32 を用いる。図 1 に構成し た計測モジュールの写真を示す。電源には電圧の安 定したモバイルバッテリーを使用する。

図1 ビームロス測定器

この計測器をビーム軌道の高さで蓄積リング入射 セプタムに固定し、運転開始時のビーム入射に並行 して試験的な放射線計数実験を行った。図2は入射 から蓄積モードへ移行するまでのカウンタ計数値の 変化を経時で表し、対応するビーム電流値を示す。 入射と蓄積時の計数値に有意な差異を確認した。

現在 AichiSR における蓄積リングへの入射効率は 50%ほどで、入射ビームの半分は蓄積できずに失わ れており、損失ビームによって生じた放射線を捉え ていると考えられる。放射線分布の測定によってビ ーム損失の空間的な情報を取得できれば、入射効率 のさらなる改善が期待できる。一方、加速器室内で の常時運用にはノイズ対策などの課題があり、引き 続き実用化に向けた開発を行う[1]。

2 光源加速器真空系の改良

AichiSR ではブースターシンクロトロンや蓄積リ ングの入射および出射セプタム真空槽に積層鋼板が 設置されており、これら鋼板からのガス放出が光源 加速器の真空悪化の主因として考えられている。

セプタム部における真空悪化は 2015 年頃から発 生しており、2018 年からイオンポンプの交換を主 に真空系の改良を行っている。2019 年 4 月および 10 月のメンテナンス期間に、蓄積リングおよびブ ースターのセプタム部に 10⁵~10⁷ Pa の領域で動作 する新しいゲッター材を使用した NEG ポンプを増 設し、排気能力の増強とイオンポンプ劣化の低減を 図った。

2020 年 10 月には、ブースター入射セプタム周辺 の 20 L/s イオンポンプ 2 台を、より高い排気能力を もつ 55 L/s イオンポンプへ交換し、さらに NEG ポ ンプを増設した。また、2021 年 4 月には、蓄積リ ングおよびブースター入射セプタム部の 500 L/s Diode 型イオンポンプを 300L/s StarCell 型イオンポ ンプへ交換するとともに、NEG ポンプを高性能品 に交換した。図3に更新したセプタム部イオンポン プの一例を示す。

また、光源加速器ではイオンポンプ用コントロー ラとして Agilent 製 Dual を使用してきたが、近年 故障が多発している。同型番品の製造は現在すでに 終息しているため、Gamma Vacuum 製 SPC への変 更を進めており、2021 年 4 月にブースター及び高 エネルギー輸送路のイオンポンプを制御する計 11 台のコントローラを交換した。イオンポンプ用コン トローラの更新作業は継続し、全数交換を行う予定 である[2]。

図3 (上)イオンポンプの更新前、(下)更新後

[1] 田部圭悟ほか、"あいち SR 光源加速器周辺の放 射線分布測定システムの開発"、第 18 回日本加速器 学会年会(2021)プロシーディング

[2] 高嶋圭史ほか、"あいち SR 光源加速器の現状"、第 18 回日本加速器学会年会(2021)施設報報告

- (2) ビームライン
- 絶縁体試料の電子収量測定における光電子の 挙動

BL7U(真空紫外分光)

内殻吸収分光法は物質にX線を照射したときに生 じる吸収を観測するものであり、その吸収端のエネ ルギーは元素に固有の値を持ち、化学状態を反映し たスペクトルを与えることから元素分析・化学状態 分析のツールとして広く用いられている。AichiSR に おいても主要な実験手法の1つとなっている。計測 法としては、透過法、電子収量法、蛍光収量法など があるが、軟X線領域においては入射X線の透過能 が極めて低いことから透過法は用いられない。また、 蛍光収量法は自己吸収効果によりスペクトルが歪み やすく、また、軟X線領域での主要な測定対象である 軽元素では蛍光収量が大変小さいため基本的には電 子収量による測定となる。

電子収量法は、X線を照射したときに放出される光 電子やオージェ電子を観測するものであるが、絶縁 体試料の場合には電子放出により表面に生じた電荷 を中和することができず帯電を生じる。これにより 放出される電子は運動エネルギー(Ek)の一部もしくは ほとんどを失い、電子の収量は減少してしまうこと から正常なスペクトルを得ることが困難である。で は、実際にはどの程度エネルギーを失っているのか、 どの程度の帯電であれば『正しい』といえるスペク トルが得られるのか検証することは大変有用である。 これは放出された電子の *E*_k分布、つまり光電子スペ クトルを計測することで可能である。そのため本研 究では、代表的な絶縁体の一つである六方晶窒化ホ ウ素(h-BN)粉末試料について、吸収端近傍のX線エネ ルギー(hv)において光電子分光(XPS)測定を行った。 測定は AichiSR の軟 X線アンジュレータビームライン BLTUで行った。BLTUでは吸収分光と光電子分光を同 一真空槽内で計測可能であり、ビームライン分光器 およびそれぞれの計測機器を連動させ、吸収分光の 各測定 hv で XPS スペクトルを自動的に取得すること が可能である。

図4に励起光エネルギーhv=500 eV で測定した XPS スペクトルを示す。(a),(b)はそれぞれ帯電対策を施し ていない試料、In 板上に薄く塗布した試料である。(a) ではピークらしき構造は観測されず、また強度も大 きく減弱している。(b)では試料中に含まれる各元素 によるピークが観測されているが、すべて数 eV 程度 低い運動エネルギーに観測されている。なお、Clsは 不純物によるものである。帯電によるエネルギーシ フトが照射光量に依存するものであるかどうか調べ るために、アンジュレータのギャップ値を調整する ことにより入射 X 線の光量を変化させながら XPS を 測定したものが図5である。スペクトルはEk<165eV の大きなピークとそれに続く裾が BKLL-Auger による ものであり、高 Ek側の小さなピークは価電子帯であ る。*E*_k=95eVに見られるピークは、ビームライン分光 器の高次回折による光によるものであり、アンジュ レータのギャップ値により高次光比が変わるため見 えたり見えなかったりする。*hv*=195 eV(a)、198 eV(b) 共に光量が増えるに従い低運動エネルギー側へシフ トしている様子がわかるが、(a)に比べ(b)の方がシフ ト量が大きくなっている。*hv*=198 eV は吸収スペクト ルにおいてピークが観測されるエネルギーである(図 $7(b))_{0}$

帯電量が電子放出量、つまり吸収強度に依存し、 エネルギーシフト量が帯電量を反映するものであれ ば、吸収端近傍においてシフト量を観測すれば電子 収量に相当するスペクトルを得ることができると考 えることができる。そこで、BK 吸収端近傍において *w*を変化させながら XPS を測定した。図6は XPS ス ペクトルの *w* 依存性であり、強度は最大ピーク強度 で規格化している。低 *w* 側で主に観測されているの は価電子帯であり、*w*=1912eVからBls内殻電子の励 起に伴って *KLL*-Auger が発現している。帯電していな い試料であれば、光電子 (価電子)の *E_k*は*w*に伴って 増大し、Auger 電子では*w*にかかわらず一定の値を持 つ。*w* に依存して明確にエネルギーシフトが生じて いる様子がわかる。これをわかりやすいように強度 を濃淡で表現したのが図7(a)である。横軸は*w*、縦軸

は Ekである。比較しやすいように縦軸は上が小さく、 下側が価電子帯側、上側が内殻準位側となるように 作図していることに注意されたい。(b)に帯電量が十 分に小さくなるように調製した試料によって測定し た全電子収量(TEY)スペクトル、(c)に hv=225 eV にお ける XPS スペクトルを示した。(a)の Ek<150 eV に見ら れる濃い部分が KLL-Auger であり、kとともに E_k が増 大しているのが光電子によるピークであり、KLL-Auger よりも高 E_k に見られているのは価電子帯、低 E_k に薄く観測されているのは浅い内殻準位と高次光に よる内殻準位である。一見してわかるように、XPSの エネルギーシフト量は、TEYスペクトルを細かい構造 まで大変よく再現している。同様の測定をNK吸収端 について行った結果が図8であり、赤、青、緑がそれ ぞれ XPS のエネルギーシフト、TEY、全蛍光収量 (TFY) スペクトルである。こちらもよく再現している。

このように、吸収端における絶縁体試料の帯電量 はXPSにより観測できることが明らかになり、その*E*_k シフト量は吸収強度を反映することが分かった。た だし、今回の実験では入射光強度の *hv* による変動を 制御していない。シフト量は入射光強度に依存する ことから、定量化のためには測定入射光エネルギー 範囲内で光量を一定に保つ必要がある。また、一連 のデータを取得するのに1つの吸収端当たり約3時間 を要している。本研究の結果は絶縁体に適用できる 新たな電子収量測定法の開発に道を拓くものである と考えているが、上記問題点を解決し、一般的に適 用できる手法となりうるか研究を進めていく。

図4 六方晶窒化ホウ素の光電子スペクトル。(a)帯 電対策を施していない粉末試料,(b) In シート上に薄 く塗布した粉末試料。帯電対策を施していない試料 では試料表面帯電のためピークを確認することがで きない。

図5X線エネルギー195,198 eV で測定した光電子スペクトルの照射光量依存性。光量が増えると低運動エネルギーへシフトし、シフト幅はX線エネルギーで異なる。

図6BK吸収端近傍で測定した光電子スペクトルのX線エネルギー依存性。運動エネルギー一定であるAuger電子のエネルギーがX線エネルギーとともに変動している。

図7X線エネルギー、電子のエネルギーに対する 強度分布。強度は濃淡で表し、濃い方が強い。(b) に全電子収量スペクトル、(c)にX線エネルギー 225eVで測定した光電子スペクトルを示した。

図8NK吸収端におけるエネルギーシフトのX線 エネルギー依存性(a)。比較のため、(b)全電子収量 スペクトル、(c)全蛍光収量スペクトルを示した。

② In-situ X線トポグラフィ測定システムの開発

BL8S2 (X線トポグラフィ・X線CT: 愛知県)

1.はじめに

BL8S2 では、単色 X 線を用いた X 線トポグラフ ィ測定により、単結晶試料の結晶欠陥観察を行うこ とができる。具体的には、二結晶分光器の Si 結晶 の θ 角度を変えることで白色 X 線から抽出した単色 X 線(エネルギー:約 6~26keV,波長:約 2.07~ 0.48 Å)を、単結晶試料に照射して回折された X 線 をトポグラフィ像として 2 次元検出器で取得するこ とにより、結晶欠陥の観察を行う。 BL8S2 では特 に、歪みがある単結晶試料や結晶性が良好でない単 結晶試料であっても一度の測定で全面が観察できる ように、単色 X 線の波長(エネルギー)を連続的に 掃引させることで X 線トポグラフィ像を取得する実 験をよく行っている。

我々は、高温アニール中の結晶などのin-situ(その場)でのX線トポグラフィ測定の要望に応えるため、sCMOS X線カメラを用いて、結晶欠陥の変化を秒単位で観測することが可能なin-situ X線トポグラフィ測定システムを開発した。

2. in-situ X線トポグラフィ測定システムの開発

開発したin-situ X線トポグラフィ測定システムに より、X線エネルギー(波長)のスキャン範囲、露 光時間、インターバル時間をパラメータとしてX線 トポグラフィ測定を連続的にin-situで行えるように なった。

X線トポグラフィ測定前の条件調整は、ライブイ メージ測定機能を用いて行う。ライブイメージ測定 機能を用いて、トポグラフィ像を連続表示させつつ、 本測定前の試料位置調整、X線エネルギー(波長) 調整を行う。条件調整を終えた後に、見出した条件 をもとに測定条件を入力し、トポグラフィ測定の指 示を出すと測定が開始される。入射X線のエネルギ ー(波長)を連続的に掃引しながら、X線カメラに X線トポグラフィ回折光を露光してトポグラフィ像 を取得し、取得されたデータは画面上にイメージと

図 9 in-situ X線トポグラフィ測定を用いた高 温実験。(a)高温電気炉とX線回折計架台を組 み合わせたX線トポグラフィ測定装置の概略 図、(b)透過配置X線トポグラフィ測定実験概 略図、(c)反射配置X線トポグラフィ測定実験 概略図(Fumihiro Fujie, *et al.*, Appl. Phys. Lett. **113**, 012101 (2018)から抜粋)。

して表示される。表示後、イメージデータの画像フ アイル保存とX線エネルギー(波長)の測定開始位 置への移動を並列で行う。この一連のプロセスを繰 り返し連続的に行うことにより、in-situ X線トポグ ラフィ測定を実現している。

3. 4H-SiC単結晶の高温in-situ X線トポグラフィ 測定 [1]

開発したin-situ X線トポグラフィ測定システムを 用いて、藤榮ら(名古屋大)によって、透過配置お よび反射配置での4H-SiC単結晶内の積層欠陥の高

図 10 (a)はアニール前、(b)~(g)はアニール中、(h)はアニール後の、(-1100)反射のトポグラフィ像。 (Fumihiro Fujie, *et al.*, Appl. Phys. Lett. **113**, 012101 (2018)から抜粋)。

温での挙動の観察が行われた。図9は測定に用いら れた実験装置の概要である。4H-SiC単結晶の昇温 時に、結晶内の積層欠陥が、1370~1550 Kの範囲 において拡大し、1550 K以上になると縮小するこ とが確認された(図10)。また、降温中においては、 1370~1550 Kの範囲においても積層欠陥が拡大す ることはなかった。これらの結果から、4H-SiC単 結晶内の結晶エッジ近傍の積層欠陥を、昇温によっ て排出できる可能性が示唆された。

参考文献

 Fumihiro Fujie, *et al.*, Appl. Phys. Lett. **113**, 012101 (2018).

3.2 外部発表

(1) 論文(2021年1月~2021年12月)

① 査読付き論文

BL1N2

Effects of aluminum substitution in nickel-rich layered $LiNi_xAl_{1-x}O_2$ (x = 0.92, 0.95) positive electrode materials for Li-ion batteries on high-rate cycle performance, H. Kaneda, Y. Furuichi, A. Ikezawa, H. Arai, J. Mater. Chem. A, 9, 21981-21994 (2021).

BL1N2

Atomic Structures and Chemical States of Active and Inactive Dopant Sites in Si-Doped GaN, J. Tang and Y. Yamashita, ACS Appl. Electron. Mater. 3, 10, 4618–4622 (2021).

BL1N2

リチウムイオン電池正極材料 Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂ の劣化解析,永見 哲夫,野本 豊和,杉山 陽栄,立木 翔 治,坂本 廉,太田 俊明, Electrochemistry, 89(4) pp 363-369 (2021).

DOI:10.5796/electrochemistry.21-00031

BL1N2

Local atomic structure analysis around Mg atom doped in GaN by X-ray absorption spectroscopy and spectrum simulations, N. Isomura, Y. Kimoto, J. Synchrotron Radiation, Vol. 28(4) 1114-1118 (2021).

BL1N2, BL6N1, BL11S2

Mechanism of gold and palladium adsorption on thermoacidophilic red alga Galdieria sulphuraria, E. Adams, K. Maeda, T. Kato, C. Tokoro, Algal Research, Vol. 60, 102549 (2021).

BL2S1

Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation, A. Nakamura, N. Kobayashi, N. Koga, R. Iino, ACS Catal. 11, 14, 8550–8564 (2021).

BL2S1

ovel Device and Strategy for Growing Large, High-Quality Protein Crystals by Controlling Crystallization Conditions, N. Tanigawa, S. Takahashi, B. Yan, M. Kamo, N. Furubayashi, K. Kubota, K. Inaka, H. Tanaka, Crystals 11(11), 1311 (2021). DOI:10.3390/cryst11111311

BL2S1

Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE, T. Nagae, M. Unno, T. Koizumi, Y. Miyanoiri, T. Fujisawa, K. Masui, T. Kamo, K. Wada, T. Eki, Y. Ito, Y. Hirose, M. Mishima, Biochemistry, 118 (20) e2024583118 (2021).

BL2S1

Structural Insights into the Regulation of Actin Capping Protein by Twinfilin C-terminal Tail,S. Takeda, R. Koike, I. Fujiwara, A. Narita, M. Miyata, M. Ota, Y. Maéda, Journal of Molecular Biology, Volume 433, Issue 9, 30 April 2021, 166891.

BL2S1

Elasticity of nanocrystalline kyanite at high pressure and temperature from ultrasonic and synchrotron Xray techniques, N.A. Gaida, S. Gréaux, Y. Kono, H. Ohfuji, H. Kuwahara, N. Nishiyama, O. Beermann, T. Sasaki, K. Niwa, M. Hasegawa, Journal of the American Ceramic Society (2021). DOI:10.1111/jace.17464

BL2S1

3D Supramolecular Chiral Crystal Structures of Radical Anion Salts of (-)-NDI- Δ and Possible

Magnetic Phase Diagrams, Asato Mizuno, Yoshiaki Shuku, Rie Suizu, Masahisa Tsuchiizub and Kunio Awaga, Cryst Eng Comm, 23, 5053–5059 (2021). DOI:10.1039/d1ce00628b

BL2S1

Crystal and Electronic Structure of U₇Te₁₂-Type Tungsten Nitride Synthesized under High Pressure, C-C. Chang, T. Sasaki, N.A. Gaida, K. Niwa, M. Hasegawa, Inorg. Chem. 60, 17, 13278–13283 (2021).

BL2S1

Nitriding synthesis and structural change of phosphorus nitrides at high pressures, K. Niwa, Y. Iijima, M. Ukita, R. Toda, K. Toyoura, T. Sasaki, K. Matsunaga, N.A. Gaida, M. Hasegawa, Raman Spectroscopy, Vol. 52(5), 1064-1072 (2021).

BL2S1

Crystal and Electronic Structures of MoSi₂-Type CrGe₂ Synthesized under High Pressure, Takuya Sasaki, Kota Kanie, Tatsuya Yokoi, Ken Niwa, Nico Alexander Gaida, Katsuyuki Matsunaga, and Masashi Hasegawa, Inorg. Chem., 60(3) 1767–1772 (2021).

BL2S1, BL5S2

Structural phase transition and giant negative thermal expansion in pyrophosphate Zn_{2-x}Mg_xP₂O₇, Y. Kadowaki, R. Kasugai, Y. Yokoyama, N. Katayama, Y. Okamoto, K. Takenaka, Appl. Phys. Lett., Vol 119(17) 201906 (2021).

BL5S1

Fluorine solubility and superconducting properties of Sm(O,F)BiS₂ single crystals, K. Kinamia, Y. Hanada, M. Nagao, A. Miura, S. Hirai, Y. Maruyama, S. Watauchi, I. Tanaka, Journal of Alloys and Compounds, Vol. 883, 25 November 2021, 160812.

BL5S1

Carbonated nanohydroxyapatite from bone waste and its potential as a super adsorbent for removal of toxic ions, Y. Sekine, T. Nankawa, T. Yamada, D. Matsumura, Y. Nemoto, M. Takeguchi, T. Sugita, I. Shimoyama, N. Kozai, S. Morooka, Journal of Environmental Chemical Engineering, Volume 9, Issue 2, April 2021, 105114.

BL5S1

Ferromagnetism and giant magnetoresistance in zinc-blende FeAs monolayers embedded in semiconductor structures, L.D. Anh, T. Hayakawa, Y. Nakagawa, H. Shinya, T. Fukushima, M. Kobayashi, H. Katayama-Yoshida, Y. Iwasa, M. Tanaka, Nature Communications volume 12, Article number: 4201 (2021).

BL5S1

Kinetic Control of the Li09Mn1.6Ni04O4 Spinel Structure with Enhanced Electrochemical Performance, F.A. Vásquez, N.C. Rosero-Navarro, A. Miura, R. Jalem, Y. Goto, M. Nagao, Y. Tateyama, K. Tadanaga, J.A. Calderón, ACS Appl. Mater. Interfaces 13, 12, 14056–14067 (2021).

BL5S1

Oxidative decomposition of ammonium ion with ozone in the presence of cobalt and chloride ions for the treatment of radioactive liquid waste, H. Aihara, S. Watanabe, A. Shibata, L. Mahardiani, R. Otomo, Y. Kamiya, Progress in Nuclear Energy, Volume 139, September 2021, 103872.

BL5S1

Electron transfer in LiMn_{1.5}Ni_{0.5}O₄ during charging studied with soft X-ray spectrometry, R. Okamoto, M. Terauchi, Microscopy, Volume 70, Issue 5, October 2021, Pages 450–460.

BL5S1

Synthesis of nanometer-sized gallium oxide using graphene oxide template as a photocatalyst for carbon dioxide reduction, K. Sonoda, M. Yamamoto, T. Tanabe, T. Yoshid, Applied Surface Science, Volume 542, 15 March 2021, 148680.

BL5S1

Flexible Photocatalytic Electrode Using Graphene, Non-noble Metal, and Organic Semiconductors for Hydrogen Evolution Reaction, K. Kondo, Y. Watanabe, J. Kuno, Y. Ishii, S. Kawasaki, M. Kato, G. Kalita, Y. Hattori, O. Mashkov, M. Sytnyk, W. Heiss, Energy Technology, Vol. 9 (8) 2100123 (2021).

BL5S1

Effects of particle size of raw materials on phase formation and optical properties of Ce³⁺⁻doped Y₃Al₅O₁₂ phosphors, S. Akiyama, R. Moriyama, J. Tanaka, Y. Sato, M. Kakihana, H. Kato, Optical Materials, Volume 121, November 2021, 111549.

BL5S1

High-capacity Li-excess lithium nickel manganese oxide as a Co-free positive electrode material, M. Tabuchi, R. Kataoka, K. Yazawa, Materials Research Bulletin, Volume 137, May 2021, 111178.

BL5S1

Cationic poly-L-amino acid-enhanced selective hydrogen production based on formate decomposition with platinum nanoparticles dispersed by polyvinylpyrrolidone, Yusuke Minami and Yutaka Amao, New J. Chem., 45, 9324-9333 (2021). DOI: 10.1039/D1NJ01181B

BL5S1

Local Structure and L1- and L₃-Edge X-ray Absorption Near Edge Structures of Middle Lanthanoid Elements (Eu, Gd, Tb, and Dy) in Their Complex Oxides, H. Asakura, S. Hosokawa, K. Teramura, T. Tanaka, Inorg. Chem. 60, 13, 9359– 9367 (2021).

BL5S1

Removal mechanisms of arsenite by coprecipitation with ferrihydrite, Y. Takaya, M. Kadokura, T. Kato, C. Tokoro, Journal of Environmental Chemical Engineering, Volume 9, Issue 5, October 2021, 105819.

BL5S1

Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation C. Tokoro, S. Lim, K. Teruya, M. Kondo, K. Mochidzuki, T. Namihira, Y. Kikuchi, Waste Management, Volume 125, 15 April 2021, Pages 58-66.

BL5S1

Understanding the active sites of boron nitride for CWPO: An experimental and computational approach, A. Quintanilla, G. Vega, J. Carbajo, J.A. Casas, Y. Lei, K. Fujisawa, H. Liu, R. Cruz-Silva, M. Terronesbcd, P. Miranzo, M.I. Osendi, M. Belmonte, J.F. Sanz, Chemical Engineering Journal, Volume 406, 15 February 2021, 126846.

BL5S1, BL5S2

A novel Eu²⁺-activated calcium zirconium silicate phosphor: Ca₃ZrSi₂O₉:Eu²⁺, Y. Sato, R. Miyake, A. Tanigaki, S. Akiyama, K. Tomita, M. Kakihana, Journal of Luminescence, Volume 231, March 2021, 117752.

BL5S1, BL5S2

Effect of chemical oxidation of spinel-type

LiNi_{0.5}Mn_{1.3}Ti_{0.2}O₄ by soaking in HNO₃, HCl and H₂SO₄, K. Fujimoto, Y. Kitajima, A. Aimi, Journal of Solid State Chemistry, Volume 302, October 2021, 122366.

BL5S1, BL6N1

Electrochemically synthesized liquid-sulfur/sulfide composite materials for high-rate magnesium battery cathodes, K. Shimokawa, T. Furuhashi, T. Kawaguchi, W.Y. Park, T. Wada, H. Matsumoto, H. Kato, T. Ichitsubo, J. Mater. Chem. A, 9, 16585-16593 (2021).

BL5S1, BL11S2

Electrochemical quartz crystal microbalance studies on specific adsorption of nanoparticle stabilizers on platinum surface, J. Kugai, S. Tanaka, S. Seino, T. Nakagawa, T.A. Yamamoto, H. Yamada, Journal of Electroanalytical Chemistry, Vol. 897, 15 September 2021, 115596.

BL5S1, BL11S2

Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis, Y. Lei, S. Pakhira, K. Fujisawa, H. Liu, C. Guerrero-Bermea, T. Zhang, A. Dasgupta, L.M. Martinez, S.R. Singamaneni, K. Wang, J. Shallenberger, A.L. Elías, R. Cruz-Silva, M. Endo, J.L. Mendoza-Cortes, M. Terrones, Materials Today, Volume 51, December 2021, Pages 108-116.

BL5S1, BL11S2

Structural Transformation of Pt–Ni Nanowires as Oxygen Reduction Electrocatalysts to Branched Nanostructures during Potential Cycles, M. Kato, Y. Iguchi, T. Li, Y. Kato, Y. Zhuang, K. Higashi, T. Uruga, T. Saida, K. Miyabayashi, I. Yagi, ACS Catal. 12, 1, 259–264 (2022).

BL5S1, BL11S2

Structure–Property Relationships of Pt–Sn Nanoparticles Supported on Al₂O₃ for the Dehydrogenation of Methylcyclohexane, K. Murata, N. Kurimoto, Y. Yamamoto, A. Oda, J. Ohyama, A. Satsuma, ACS Appl. Nano Mater. 4, 5, 4532–4541 (2021).

BL5S1, BL11S2

High Durability of a 14-Membered Hexaaza Macrocyclic Fe Complex for an Acidic Oxygen Reduction Reaction Revealed by In Situ XAS Analysis, J. Ohyama, M. Moriya, R. Takahama, K. Kamoi, S. Kawashima, R. Kojima, T. Hayakawa, Y. Nabae, JACS Au 1, 10, 1798–1804 (2021).

BL5S2

Pressure-Tunable Crystal Structure and Magnetic Transition Temperature of the Nowotny Chimney-Ladder CrGey Phase, T. Sasaki, K. Noda, N.A. Gaida, K. Niwa, M. Hasegawa, Inorg. Chem. 60, 19, 14525– 14529 (2021).

BL5S2

Giant negative thermal expansion of polycrystalline Ti₂O₃ induced by microstructural effects, Y. Kadowaki, R. Kasugai, Y. Yokoyama, N. Katayama, Y. Okamoto, and K. Takenaka, Appl. Phys. Lett., Vol 119(17) 171901 (2021).

BL5S2

Slow dynamics of disordered zigzag chain molecules in layered LiVS₂ under electron irradiation, N. Katayama, K. Kojima, T. Yamaguchi, S. Hattori, S. Tamura, K. Ohara, S. Kobayashi, K. Sugimoto, Y. Ohta, K. Saitoh, H. Sawa, npj Quantum Materials volume 6, Article number: 16 (2021).

BL5S2

Tailoring the Lithium-ion Conductivity of Li₂OHBr by Substitution of Bromine with Other Halogens,
M.K. Sugumar, T. Yamamoto, M. Motoyama, Y.
Iriyama, Chem. Lett. 50, 448–451 (2021).
DOI:10.1246/cl.200778

BL5S2

Phase relations and thermoelasticity of magnesium silicide at high pressure and temperature, N. A. Gaida, K. Niwa, T. Sasaki, M. Hasegawa, J. Chem. Phys. 154, 144701 (2021). DOI:10.1063/5.0044648

BL5S2

Novel synthesis of single-crystalline TbCu₇-type Sm– Fe powder by low-temperature reduction-diffusion process using molten salt, S. Okada, K. Takagi, Journal of Rare Earths, 40 1126-1133 (2022). DOI: 10.1016/j.jre.2021.05.017

BL5S2

Phase Evolution of Trirutile Li_{0.5}FeF₃ for Lithium-Ion Batteries, Y. Zheng, S. Tawa, J. Hwang, Y. Orikasa, K. Matsumoto, R. Hagiwara, Chem. Mater. 33, 3, 868–880 (2021).

BL5S2

Structural and transport properties of Ni⁻ and Tidoped lithium manganese spinels, S. Abe, M. Takagi, S. Iwasaki, F. Munakata, Journal of Solid State Chemistry, Volume 294, February 2021, 121863.

BL5S2

Investigation of the Difference in Charge/Discharge Resistance for Cathode Materials after Cycle Test Combined with STEM-EELS and XAFS Analysis, Y. Shimonishi, D. Mori, Y. Maeda, S. Taminato, N. Imanishi, S. Yoshida, J. Electrochem. Soc. 168 040533 (2021).

BL5S2

Structural adsorption mechanism of chloroform in narrow micropores of pitch-based activated carbon fibres, Y. Yoshikawa, K. Teshima, R. Futamura, H. Tanaka, T. Iiyama, K. Kaneko, Carbon, Vol. 171, pp. 681-688 (2021).

BL5S2

High-Density Frenkel Defects as Origin of N-Type Thermoelectric Performance and Low Thermal Conductivity in Mg₃Sb₂-Based Materials, T. Kanno, H. Tamaki, M. Yoshiya, H. Uchiyama, S. Maki, M. Takata, Y. Miyazaki, Advanced Functional Materials, Vol. 31(13) 2008469 (2021).

BL5S2

Low-Resistance Mechanism of Nanoflake Crystalline Aromatic Dicarboxylates with Selective Defects for Safe and Fast Charging Negative Electrodes, N. Ogihara, M. Hasegawa, H. Kumagai, H. Nozaki, ACS Nano 15, 2, 2719–2729 (2021).

BL5S2

Synthesis and ion transport properties of RE₃GaO₆ (RE = rare earth) oxide ion conductors, S. Tajima, J. Lee, A. Suzumura, N. Ohba, Journal of the European Ceramic Society Volume 41, Issue 8, July 2021, Pages 4516-4527.

BL5S2

Synthesis and Ion-Transport Properties of EuKGe₂O₆-, Ca₃Fe₂Ge₃O₁₂-, and BaCu₂Ge₂O₇-Type Oxide-Ion Conductors, S. Tajima, N. Ohba, A. Suzumura, S. Kajita, Inorg. Chem. 60, 22, 17019–17032 (2021).

BL5S2

Thermal Behavior of Li1+x[Li1/3Ti5/3]O4 and a Proof of

Concept for Sustainable Batteries, K. Mukai, T. Uyama, T. Nonaka, ACS Appl. Mater. Interfaces 13, 36, 42791–42802 (2021).

BL5S2, BL8S1

Room Temperature Operation and High Cycle Stability of an All-Solid-State Lithium Battery Fabricated by Cold Pressing Using Soft Li₂OHBr Solid Electrolyte, K. Yoshikawa, T. Yamamoto, M. K. Sugumar, M. Motoyama, Y. Iriyama, Energy Fuels 35, 15, 12581–12587 (2021).

BL5S2, BL8S1

Theoretical and Experimental Studies of KLi₆TaO₆ as a Li-Ion Solid Electrolyte, N. Suzuki, J. Lee, Y. Masuoka, S. Ohta, T. Kobayashi, R. Asahi, Inorg. Chem. 60, 14, 10371–10379 (2021).

BL5S2, BL8S1

Highly oxidation-resistant graphene-based porous carbon as a metal catalyst support, S. Wang, Y. Yoshikawa, Z. Wang, H. Tanaka, K. Kaneko, Carbon Trends, Volume 3, April 2021, 100029.

BL5S2, BL8S1

The subtracting pore effect method for an accurate and reliable surface area determination of porous carbons, S. Wang, F.V-Burgos, A. Furuse, Y. Yoshikawa, H. Tanaka, K. Kaneko, Carbon, Volume 175, 30 April 2021, Pages 77-86.

BL5S2, BL8S1

Anisotropic Nd-Fe ultrafine particles with stable and metastable phases prepared by induction thermal plasma, Y. Hirayama, M. Shigeta, Z. Liu, N. Yodoshi, A. Hosokawa, K. Takagi, J. Alloys and Compounds, Volume 873, 25 August 2021, 159724.

BL5S2, BL8S3

Spontaneously formed nanostructures in double perovskite rare-earth tantalates for thermal barrier coatings, T. Ogawa, T. Matsudaira, D. Yokoe, E. Kawai, N. Kawashima, C.A.J. Fisher, Y. Habu, T. Kato, S. Kitaoka, Acta Materialia, Volume 216, 1 September 2021, 117152.

BL5S2, BL11S2

Promoting Reversible Cathode Reactions in Magnesium Rechargeable Batteries Using Metastable Cubic MgMn₂O₄Spinel Nanoparticles, H. Kobayashi, K. Samukawa, M. Nakayama, T. Mandai, I. Honma, ACS Appl. Nano Mater. 4, 8, 8328–8333 (2021).

BL5S2, BL11S2

Quantitative Evaluation of the Activity of Low-Spin Tetravalent Nickel Ion Sites for the Oxygen Evolution Reaction, Y. Ren, T. Horiguchi, T. Uchiyama, Y. Orikasa, T. Watanabe, K. Yamamoto, T. Takami, T. Matsunaga, Y. Nishiki, S. Mitsushima, Y. Uchimoto, ACS Appl. Energy Mater. 4, 10, 10731– 10738 (2021).

BL5S2, BL11S2

The Effect of Cation Mixing in LiNiO₂ toward the Oxygen Evolution Reaction, Y. Ren, R. Yamaguchi, T. Uchiyama, Y. Orikasa, T. Watanabe, K. Yamamoto, T. Matsunaga, Y. Nishiki, S. Mitsushima, Y. Uchimoto, ChemElectronChem, Vol. 8(1) 70-76 (2021).

BL5S2, BL11S2

Effect of Al substitution on structure and cathode performance of MgMn₂O₄ spinel for magnesium rechargeable battery, R. Yokozaki, H. Kobayashi, T. Mandai, I. Honma, J. Alloys and Compounds, Vol. 872(15) 159723 (2021).

BL5S2, BL11S2

Phase Transition Behavior of MgMn₂O₄ Spinel Oxide Cathode during Magnesium Ion Insertion, Feilure Tuerxun, Saeko Otani, Kentaro Yamamoto, Toshiyuki Matsunaga, Hiroaki Imai, Toshihiko Mandai, Toshiki Watanabe, Tomoki Uchiyama, Kiyoshi Kanamura, and Yoshiharu Uchimoto, Chem. Mater. 33, 3, 1006–1012 (2021).

BL5S2, BL11S2

CaMn₇O₁₂ Quadruple Perovskite Oxides Proceed by Two-Active-Site Reaction Mechanism for the Oxygen Evolution Reaction, Y. Ren, K. Kashihara, T. Uchiyama, Y. Orikasa, T. Watanabe, K. Yamamoto, T. Takami, T. Matsunaga, Y. Nishiki, S. Mitsushima, Y. Uchimoto, Chemistry Europe, Volume8, Issue23, Pages 4605-4611 (2021).

BL6N1

Eutectic salt mixture-assisted sodium-vapor-induced synthesis of Pt–Ca nanoparticles, and their microstructural and electrocatalytic properties, H. Itahara, N. Takahashi, S. Kosaka, Y. Takatani, M. Inaba, Y. Kamitaka, Chem. Commun., 57, 4279-4282 (2021).

BL6N1

Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation, L. Kang, B. Wang, A. Thetford, K. Wu, M. Danaie, Q. He, E.K. Gibson, L-D. Sun, H. Asakura, C.R.A. Catlow, F.R. Wang, Angewandte Chemie, Volume133, Issue3, January 18, 2021, Pages 1232-1239.

BL6N1

The Role of Carbon Electrodes Pore Size Distribution on the Formation of the Cathode–Electrolyte Interphase in Lithium–Sulfur Batteries, C. Kensy, D. Leistenschneider, S. Wang, H. Tanaka, S. Dörfler, K. Kaneko, S. Kaskel, Batteries & Supercaps, Volume4, Issue4, April 2021, Pages 612-622.

BL6N1

Distribution and chemical species of phosphorus across density fractions in Andisols of contrasting mineralogy, A. Takamoto, Y. Hashimoto, M. Asano, K. Noguchi, R. Wagai, Geoderma, Volume 395, 1 August 2021, 115080.

BL6N1

Microscale Heterogeneous Distribution and Speciation of Phosphorus in Soils Amended with Mineral Fertilizer and Cattle Manure Compost, N. Yamaguchi, T. Ohkura, A. Hikono, Y. Hashimoto, A. Suda, T. Yamamoto, K. Ando, M. Kasuya, P. Northrup, S-L. Wang, D. Hesterberg, Minerals 11(2), 121 (2021). DOI:10.3390/min11020121

BL6N1

Preparation of Anatase Titanium Dioxide Nanoparticle Powders Submitting Reactive Oxygen Species (ROS) under Dark Conditions, T.M.P. Nguyen, P. Lemaitre, M. Kato, K. Hirota, K. Tsukagoshi, H. Yamada, A. Terabe, H. Mizutani, S. Kanehira, Materials Sciences and Applications, 12, 89 (2021). DOI:10.4236/msa.2021.122006

BL6N1

Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water, K. N. Palansooriya, S. Kim, A. D. Igalavithana, Y. Hashimoto, Y.-E. Choi, R. Mukhopadhyay, B. Sarkar, Y.S. Ok, Journal of Hazardous Materials, Volume 415, 5 August 2021, 125464.

BL6N1

Speciation of phosphorus accumulated in fertilized cropland of Aichi prefecture in Japan with different soil properties by sequential chemical extraction and P K-edge XANES, K. Ando, N. Yamaguchi, Y. Nakamura, M. Kasuya, K. Taki, Soil Science and Plant Nutrition, Volume 67, Issue 2, Pages 150-161 (2021).

BL6N1

Structural characterization by X-ray analytical techniques of calcium aluminate cement modified with sodium polyphosphate containing cesium chloride, Y. Takahatake, S. Watanabe, K. Irisawa, H. Shiwaku, M. Watanabe, J. Nuclear Materials, Volume 556, 1 December 2021, 153170.

BL6N1

Investigation of Physical Properties of Disodium Etidronate Tetrahydrate and Application of Phosphorus K-Edge X-Ray Absorption Near-Edge Structure Spectroscopy, N. Ito, T. Hashizuka, M. Ito, H. Suzuki, S. Noguchi, Pharmaceutical Research, Vol. 38, pp. 2147–2155 (2021).

BL6N1

High Rate Capability from a Graphite Anode through Surface Modification with Lithium Iodide for All-Solid-State Batteries, S. Yang, K. Yamamoto, X. Mei, A. Sakuda, T. Uchiyama, T. Watanabe, T. Takami, A. Hayashi, M. Tatsumisago, Y. Uchimoto, ACS Appl. Energy Mater. 5, 1, 667–673 (2022)..

BL6N1

Preparation of titania with double band structure derived from a quantum size effect: Drastic increase in the photocatalytic activity, S. Somekawa, H. Watanabe, Y. Ono, Y. Oaki, H. Imai, Materials Letters, Volume 304, 1 December 2021, 130609.

BL6N1

X-ray Absorption Near-Edge Spectroscopy Analysis of Indomethacin in Crystalline Forms and in Amorphous Solid Dispersions, H. Suzuki, M. Iwata, M. Ito, S. Noguchi, Mol. Pharmaceutics, 18(9) 3475– 3483 (2021).

BL6N1

Preparation of silver-decorated Soluplus[®] nanoparticles and antibacterial activity towards S. epidermidis biofilms as characterized by STEM-CL spectroscopy, C. Takahashi, T. Yamada, S. Yagi, T. Murai, S. Muto, Materials Science and Engineering: C, Volume 121, February 2021, 111718.

BL6N1

A practical method for determining film thickness using X-ray absorption spectroscopy in total electron yield mode, N. Isomura, K. Oh-ishi, N. Takahashi and S. Kosaka, J. Synchrotron Rad. 28, 1820-1824 (2021). DOI:10.1107/S1600577521009401

BL7U

Functional nitrogen science based on plasma processing: quantum devices, photocatalysts and activation of plant defense and immune systems, T. Kaneko, H. Kato, H. Yamada, M. Yamamoto, T. Yoshida, P. Attri, K. Koga, T. Murakami, K. Kuchitsu, S. Ando, Y. Nishikawa, K. Tomita, R. Ono, T. Ito, A.M. Ito, K. Eriguchi, T. Nozaki, T. Tsutsumi, K. Ishikawa, Jpn. J. Appl. Phys. Volume 61, Number SA, SA0805 (2022).

BL7U

Humin: No longer inactive natural organic matter, D.M. Pham, T. Kasai, M. Yamaura, A. Katayama, Chemosphere, Volume 269, April 2021, 128697.

BL7U

Electronic Structures of Transition-Metal Pernitrides Studied Using X-ray Absorption and Photoelectron Spectroscopy, K. Soda, D. Kato, M. Komabuchi, T. Terabe, S. Takayama, T. Ibaragi, M. Kato, K. Niwa, M. Hasegawa, S. Takakura, M. Nakatake, J. Phys. Soc. Jpn. 90, 201, 044710 (2021).

BL7U

Observation of a flat band and bandgap in millimeter-scale twisted bilayer graphene, K. Sato, N. Hayashi, T. Ito, N. Masago, M. Takamura, M. Morimoto, T. Maekawa, D. Lee, K. Qiao, J. Kim, K. Nakagahara, K. Wakabayashi, H. Hibino, W. Norimatsu, Communications Materials volume 2, Article number: 117 (2021).

BL7U

Single germanene phase formed by segregation through Al(111) thin films on Ge(111), J. Yuhara, H. Muto, M. Araidai, M. Kobayashi, A. Ohta, S. Miyazaki, S. Takakura, M. Nakatake, G.L. Lay, 2D Materials, Volume 8, Number 4, 045039 (2021).

BL7U

Epitaxial growth of massively parallel germanium nanoribbons by segregation through Ag(110) thin films on Ge(110), J. Yuhara, H. Shimazu, M. Kobayashi, A. Ohta, S. Miyazaki, S. Takakura, M. Nakatake, G.L. Lay, Applied Surface Science, Volume 550, 1 June 2021, 149236.

BL7U

In-plane strain-free stanene on a Pd₂Sn(111) surface alloy, J. Yuhara, T. Ogikubo, M. Araidai, S.Takakura, M. Nakatake, G.L. Lay, Phys. Rev. Materials 5, 053403 (2021).

BL8S1

Robust Polarization Stability in a Self-Assembled Ultrathin Organic Ferroelectric Nano Lamellae, P. Viswanath, K.K.H. De Silva, Y. Morikuni, M. Yoshimura, Advanced Electronic Materials (2021). DOI:10.1002/aelm.202001085

BL8S1

XRD investigation of mechanical properties of cellulose microfibrils in S1 and S3 layers of thermally modified wood under tensile loading, E. Kojima, M. Yamasaki, K. Imaeda, C-G. Lee, T. Sugimoto, Y. Sasaki, Wood Science and Technology volume 55, pages955–969 (2021).

BL8S1

Exchange-Coupled SmCo₅/Fe Nanocomposite Magnet Prepared by Low Oxygen Powder Metallurgy Process, K. Park, Y. Hirayama, W. Yamaguchi, M. Kobashi, K. Takagi, IEEE Transactions on Magnetics, 58(2) (2022). DOI:10.1109/TMAG.2021.3080688

BL8S1

Anisotropic Sm-Co nanopowder prepared by induction thermal plasma, K. Park, Y. Hirayama, M. Shigeta, Z. Liu, M. Kobashi, K. Takagi, Journal of Alloys and Compounds, Volume 882, 15, 160633 (2021).

BL8S1

Preparation of flake-shaped Fe-based nanocrystalline soft magnetic alloy particles subjected to plastic deformation, Satoshi Motozuka, Hisashi Sato, Hidenori Kuwata, Mitsuo Bito, Yasuo Okazaki, Philosophical Magazine Letters, 101, 399 (2021). DOI:10.1080/09500839.2021.1953713

BL8S1

Fabrication of L10-FeNi films with island structures by nitrogen insertion and topotactic extraction for improved coercivity, T. Nishio, H. Kura, K. Ito, K. Takanashi, H. Yanagihara, APL Materials 9, 091108 (2021). DOI:10.1063/5.0062692

BL8S2

Mixed alkali-ion transport and storage in atomicdisordered honeycomb layered NaKNi₂TeO₆, T. Masese, Y. Miyazaki, J. Rizell, G.M. Kanyolo, C-Y. Chen, H. Ubukata, K. Kubota, K. Sau, T. Ikeshoji, Z-D. Huang, K. Yoshii, T. Takahashi, M. Ito, H. Senoh, J. Hwang, A. Alshehabi, K. Matsumoto, T. Matsunaga, K. Fujii, M. Yashima, M. Shikano, C. Tassel, H. Kageyama, Y. Uchimoto, R. Hagiwara, T. Saito, Nature Communications volume 12, Article number: 4660 (2021).

BL8S2

Non-Destructive Imaging on Synthesised Nanoparticles, K. Elphick , A. Yamaguchi, A. Otsuki, N.L. Hayagan, A. Hirohata, Materials 14(3), 613 (2021). DOI:10.3390/ma14030613

BL8S2

Design of automatic detection algorithm for dislocation contrasts in birefringence images of SiC wafers, A. Kawata, K. Murayama, S. Sumitani, S. Harada, Jpn. J. Appl. Phys., 60, SBBD06 (2021).

BL8S2

Evaluation of Porosity in Gas-Atomized Powder by Synchrotron X-ray CT and Investigation of the Effect of Gas Species, N. Yodoshi, T. Endo, N. Masahashi, Materials Transactions, 62(10), 1549 (2021). DOI:10.2320/matertrans.MT-Y2021001

BL8S2

Immobilization of partial dislocations bounding double Shockley stacking faults in 4H-SiC observed by in situ synchrotron X-ray topography, F. Fujie, S. Harada, H. Suo, B Raghothamachar, M. Dudley, K. Hanada, H. Koizumi, T. Kato, M. Tagawa, T. Ujihara, Materialia, Volume 20, December 2021, 101246.

BL8S2

Synchrotron X-ray topographic image contrast variation of screw-type basal plane dislocations located at different depths below the crystal surface in 4H-SiC, F. Fujie, H. Peng, T. Ailihumaer, B. Raghothamachar, M. Dudley, S. Harada, M. Tagawa, T. Ujihara, Acta Materialia, Vol. 208(15) 116746 (2021).

BL8S2

X-ray radiolysis-induced-photochemical reaction at interface between liquid and substrate, S. Saegusa, N. Akamatsu, I. Sakurai, I. Okada, Y. Utsumi, A. Yamaguchi, 2021 International Conference on Electronics Packaging (ICEP), 63 (2021). DOI:10.23919/ICEP51988.2021.9451970

BL8S2

Detection and classification of dislocations in GaN by optical microscope using birefringence, A. Tanaka, S. Harada, K. Hanada, Y. Honda, T. Ujihara, H. Amano, Proceedings Vol. 11706, Light-Emitting Devices, Materials, and Applications XXV; 117060Y, 2021. DOI:10.1117/12.2577164

BL8S3

Cold Crystallization and the Molecular Structure of Imidazolium-Based Ionic Liquid Crystals with a p-Nitroazobenzene Moiety, K. Ishino, H. Shingai, Y. Hikita, I. Yoshikawa, H. Houjou, K. Iwase, ACS Omega 6, 48, 32869–32878 (2021).

BL8S3

国内放射光施設横断X線小角散乱ラウンドロビン実 験, 杉山信之, 山元博子, 加藤裕和, 大坂恵一, 佐藤眞 直, 杉本泰伸, SPring-8/SACLA 利用研究成果集/9 巻 4号, p. 211-218 (2021).

BL8S3

Antithrombogenic poly(2-methoxyethyl acrylate) elastomer via triblock copolymerization with poly(methyl methacrylate), N. Kurokawa, F. Endo, K. Bito, T. Maeda, A. Hotta, Polymer Volume 228, 16 July 2021, 123876.

BL8S3

Formation of Highly Active Ziegler–Natta Catalysts Clarified by a Multifaceted Characterization Approach, A. Piovano, T. Wada, A. Amodio, G. Takasao, T. Ikeda, D. Zhu, M. Terano, P. Chammingkwan, E. Groppo, T. Taniike, ACS Catal. 11, 22, 13782–13796 (2021).

BL8S3

Insights into the Formation Pathway of Templated Ordered Nanostructured Carbonaceous Particles under Hydrothermal Conditions, Shiori Kubo, Langmuir, 37, 36, 10866–10874 (2021).

BL8S3

Tunable and ordered porous carbons with folding-like nanoscale framework via interdigitation and twisting, S. Kubo, Mater. Adv., 2, 4029-4040 (2021).

BL8S3

Importance of interfacial mixed layer to determine the middle block Tg in lamellar structures of uncrosslinked and cross-linked hard-b-soft-b-hard triblock copolymers, I. Kawarazaki, M. Hayashi, Polymer, Volume 227, 16 June 2021, 123868.

BL8S3

Al-1%Mn 合金の熱間加工で形成する析出物とその 分散状態,田中 宏樹,佐々木 勝寛,立山 真司,軽金属, 71 巻 12 号 p. 549-554 (2021).

BL8S3

In Situ Small-Angle X-ray Scattering Studies on the Growth Mechanism of Anisotropic Platinum Nanoparticles, W. Yoshimune, A. Kuwaki, T. Kusano, T. Matsunaga, H. Nakamura, ACS Omega 6, 16, 10866–10874 (2021).

BL8S3

Transparent thermoplastic composite from a refractive index-adjustable polymer blend, T. Hirai, K. Yagi, K. Nakai, K. Okamoto, T. Matsunaga, H. Okamoto, Composites Part B: Engineering, 225(15), 109258 (2021).

BL11S2

Chromium Oxides as Structural Modulators of Rhodium Dispersion on Ceria to Generate Active Sites for NO Reduction, S. Ikemoto, S. Muratsugu, T. Koitaya, M. Tada, ACS Catal. 12, 1, 431–441 (2022).

BL11S2

Three-way catalytic properties and microstructures of metallic glass driven composite catalysts, M. Hattori, N. Katsuragawa, S. Yamaura, M. Ozawa, Catalysis Today, Volume 375(1), 273 (2021).

BL11S2

Quadruple perovskite oxides CaMn₇O₁₂ proceed by twoactive-site reaction mechanism for oxygen evolution reaction, Yadan Ren, Kodai Kashihara, Tomoki Uchiyama, Yuki Orikasa, Toshiki Watanabe, Kentaro Yamamoto, Tsuyoshi Takami, Toshiyuki Matsunaga, Yoshinori Nishiki, Shigenori Mitsushima, Yoshiharu Uchimoto, Chem. Electro. Chem., 8(23), 4605 (2021). DOI:10.1002/celc.202101228

BL11S2

Influence of Nd³⁺ modifying on 80TeO₂-xZnO-(20-x)Na₂O ternary glass system, J.de Clermont-Gallerande, D. Taniguchi, M. Colas, P. Thomas, T. Hayakawa, APL Materials 9, 111111 (2021). DOI:10.1063/5.0061880

BL11S2

Soluble porous carbon cage-encapsulated highly active metal nanoparticle catalysts, H. Liu, L. Chen, C-C. Hou, Y-S. Wei, Q. Xu, J. Mater. Chem. A, 9, 13670-13677 (2021).

BL11S2

Ultrahigh-Pressure Preparation and Catalytic Activity of MOF-Derived Cu Nanoparticles, I. Yamane, K. Sato, R. Otomo, T. Yanase, A. Miura, T. Nagahama, Y. Kamiya, T. Shimada, Nanomaterials 11(4), 1040 (2021). DOI:10.3390/nano11041040

BL11S2

Reductive solvothermal synthesis of MgMn₂O₄ spinel nanoparticles for Mg⁻ion battery cathodes, R. Yokozaki, H. Kobayashi, I. Honma, Ceramics International, 47(7), Part B, 10236 (2021).

BL11S2

Relationship between photoluminescence intensity, Mn ion oxidation, and crystal structure of new phosphors Li-M-Ti-O:Mn⁴⁺ (M = Nb or Ta), H. Nakano, S. Ando, Materials Research Bulletin, Volume 143, November 111445 (2021).

BL11S2

Applications of Smart Material of Li₂O-(Nb/Ta)₂O₅-TiO₂ Solid Solution Having a Unique Periodical Structure, H. Nakano, Materials Science Forum, vol. 1016, 1009–1013 (2021).

DOI:10.4028/www.scientific.net/MSF.1016.1009

BL11S2

Heterogeneously Ni–Pd nanoparticle-catalyzed basefree formal C–S bond metathesis of thiols, K. Mitamura, T. Yatabe, K. Yamamoto, T. Yabe, K. Suzuki, K. Yamaguchi, Chem. Commun., 57, 3749-3752 (2021). DOI: 10.1039/D1CC00995H

BL11S2

Crystal melting and vitrification behaviors of a threedimensional nitrile-based metal-organic framework, C. Das, S. Horike, Faraday Discuss., 225, 403-413 (2021). DOI: 10.1039/D0FD00003E

BL11S2

蛍光 XAFS による瀬戸染付の成分分析,太田公典,ぶんせき,8,387 (2021).

総論・解説

ホール効果による電気的特性評価-第2回-、竹田 美和、Crystal Letters, 76, 3-9 (2021).

コロナ禍における共用施設の運営、竹田美和、 Crystal Letters, 76, 56-58 (2021).

ホール効果による電気的特性評価-第3回-、竹田 美和、Crystal Letters, 77, 3-9 (2021).

ホール効果による電気的特性評価-第4回-、竹田 美和、Crystal Letters, 78, 3-7 (2021). あいちシンクロトロン光センター~新星の誕生~、 竹田美和、科学技術交流ニュース 26(3), 4-5 (2021).

あいちシンクロトロン光センター~新星の成長~、 竹田美和、科学技術交流ニュース、27(1), 6-8 (2021),.

あいちシンクロトロン光センター~新星の出会い~、 竹田美和、科学技術交流ニュース、27(2), 12-15 (2021).

その他

Crystallization of amorphous indium-based oxide films, J. Jia, S. Iwasaki, S. Yamamoto, S. Nakamura, E. Magome, T. Okajima, Y. Shigesato, ACS Applied Materials and Interfaces, 13, 31825-31834 (2021). DOI:10.1021/acsami.1c05706

その他

Extracting Local Symmetry of Mono-Atomic Systems from Extended X-ray Absorption Fine Structure Using Deep Neural Networks, F. Iesari, H. Setoyama, T. Okajima, Symmetry, 13(6), 1070 (2021). DOI:10.3390/sym13061070

(2) 外部発表(2021年4月~2022年3月)

① 国際会議

Analysis of liquid metals EXAFS data using deep neural networks, F. Iesari, H. Setoyama, T. Okajima, International Conference on X-ray Absorption Fine Structure 2021(XAFS2021 virtual), July 11 - 13, 2021, Sydney, Australia

Full-potential multiple scattering calculations inEXAFS regime, Y. Tamura, K. Yoshikawa, F. Iesari,T. Okajima, K. Hatada, International Conference on

X-ray Absorption Fine Structure 2021(XAFS2021 virtual), July 11 - 13, 2021, Sydney, Australia

Extracting local symmetry of liquid metals from extended x-ray absorption fine structure using deep neural networks, F. Iesari, H. Setoyama, T. Okajima, 25th Congress of the International Union of Cystography, August 14-22, 2021, Prague, Czech Republic + on-line

Reverse Monte Carlo of EXAFS data for materials characterization (invited), F. Iesari, T. Okajima, A. Di Cicco, Materials Research Meeting 2021, December 13-17, 2021, Yokohama, Japan

③ 学会・シンポジウム講演

固体電解質 Li_xLa_{(1-x)3}NbO₃バルク単結晶の角度分解 光電子分光,山元凌、仲武昌史、高倉将一、山田真 一郎、田中清尚、藤原靖幸、森分博紀、入山恭寿、 伊藤孝寛、日本物理学会 2021 年秋季大会,オンラ イン開催,2021 年 9 月 20-23 日

カーボン層被覆した窒化ホウ素ナノチューブにおけ る化学結合状態の解析,加藤雅清、井上泰輝、 Chiew Yi Ling,末永和知、仲武昌史、高倉将一、渡 辺義夫、小林慶裕、第 69 回応用物理学会春季学術 講演会、青山学院大学相模原キャンパス&オンライ ン、2022年3月22-26日

薄膜フォトカソード用グラフェン膜基盤の加熱洗浄 効果の評価、後藤啓太、郭磊、山口尚登、仲武昌史、 高倉将一、山本将博、高嶋圭史、第 35 回日本放射 光学会年会、オンライン開催、2022年1月7-9日

半導体フォトカソード分析用真空輸送装置の開発、 塩原慧介、郭磊、仲武昌史、高倉将一、真野篤志、 高嶋圭史、 オンライン開催、日本物理学会第77 回年次大会、2022年03月15-19日

TPP[FePc(CN)₂]₂の角度分解光電子分光、保科拓海、 仲武昌史、高倉将一、出田真一郎、田中清尚、 Thierry Ouisse、伊藤孝寛、 オンライン開催、日 本物理学会第77回年次大会、2022年3月15-19日

Hex-Au(001)基板上グラフェンのスピン分解角度分 解光電子分光、松永和也、林直輝、仲武昌史、出田 真一郎、田中清尚、田中慎一郎、乗松航、保田諭、 浅岡秀人、寺澤知潮、伊藤孝寛、オンライン開催、 日本物理学会第 77 回年次大会、2022 年 3 月 15-19 日

反強磁性 i-MAX 相化合物(Mo2/3Dy1/3)2ALC の 3 次 元角度分解光電子分光、杉本卓史、古田貫志、 Damir Pinek、仲武昌史、出田真一郎、田中清尚、 Thierry Quisse、伊藤孝寛、 オンライン開催、日 本物理学会第 77 回年次大会、2022 年 3 月 15-19 日

硬X線XAFSビームラインにおける支援内容につい て,須田耕平,加藤弘泰,福永正則,田渕雅夫,渡 辺義夫,國枝秀世,第1回東海国立大学機構技術発 表会,P1,オンライン開催,2022年3月7日

二酸化炭素還元反応場における銀担持酸化ガリウム 光触媒の状態分析,山本宗昭,北嶋乃樹,陰地宏, 須田耕平,塚田千恵,柴田佳孝,神岡武文,永見哲 夫,田辺哲朗,吉田朋子,第57回X線分析討論会, O2-3,オンライン開催,2021年11月6日

XAFS の電子収量法と転換電子収量法における分析 深さについて、陰地宏、2021 年度実用表面分析講 演会 (Symposium on Practical Surface Analysis 2021 (PSA-21)) 、2021 年 11 月 18 日~19 日、オン ライン会議、口頭発表

http://www.sasj.jp/PSA/PSA21/program.html

Analysis of mono-atomic EXAFS data using deep

neural networks, Iesari Fabio,瀬戶山寛之,岡島敏 浩,第 24回 XAFS 討論会, 2021 年 9月 1日~3日,オ ンライン開催

広域X線吸収微細構造のスパースモデリングによる イットリウム酸水素化物薄膜の近接構造の決定, 熊 添博之, 五十嵐康彦, Iesari Fabio, 清水亮太, 小松遊矢, 一杉太郎, 松村大樹, 齋藤寛之, 岩満一功, 岡島敏浩, 妹尾与志木, 岡田真人, 赤井一郎, 日本物理学会 2021 秋季大会, 2021 年 9 月 20 日~23 日, オンライン開催

イットリウム酸水素化物薄膜で計測された広域X線 吸収微細構造のスパースモデリング,熊添博之,五十 嵐康彦, Fabio Iesari,清水亮太,小松遊矢,一杉太郎, 松村大樹,齋藤寛之,岩満一功,岡島敏浩,妹尾与志木, 岡田真人,赤井一郎,第6回計測インフォマティクス 研究会,2021年11月26日,オンライン開催

空気曝露された Li₅La₃Ta₂O₁₂ において蛍光収量法 で計測された 軟 X 線吸収端近傍構造のベイズ分光, 田村祐樹,藤木淑慎,小川宇宙,山上遼,山崎大雅,岩 満一功,熊添博之,岡島敏浩,赤井一郎,第 32 回光物 性研究会, 2021 年 12 月 10 日~11 日, オンライン開 催

空気曝露された Li₅La₃Ta₂O₁₂ において全電子収量 法で計測された 軟 X 線吸収端近傍構造のベイズ分 光,藤木淑慎,田村祐樹,小川宇宙,山上遼,山崎大雅, 岩満一功,熊添博之,岡島敏浩,赤井一郎,第 32 回光 物性研究会, 2021 年 12 月 10 日~11 日,オンライン 開催

L1 正則化による多重散乱効果を考慮した Cu₂O の 広域 X 線吸収微細構造解析, 熊添博之, 五十嵐康彦, Fabio Iesari, 岩満一功, 瀬戸山寛之, 岡島敏浩, 妹尾与 志木, 岡田真人, 赤井一郎, 第 32 回光物性研究会, 2021 年 12 月 10 日~11 日, オンライン開催

広域 X 線吸収微細構造のスパースモデリングを用

いたイットリウム酸水素化物薄膜の近距離構造解析, 熊添博之,五十嵐康彦, Iesari Fabio,清水亮太,小松遊 矢,一杉太郎,松村大樹,齋藤寛之,岩満一功,岡島敏 浩,妹尾与志木,岡田真人,赤井一郎,第35回日本放 射光学会年会・放射光科学合同シンポジウム,2022 年1月7日~9日,東京大学本郷キャンパス+オンラ イン開催

CREST「情報計測」(1)「ベイズ統計スペクトル分 解」(招待講演), 赤井一郎, 岡島敏浩, 水牧仁一朗, 青 西亨, 山崎裕一, 2021 年度・第 5 回元素戦略シンポ ジウム, 2022 年 2 月 4 日, オンライン開催

EXAFS の Bayesian sparse modeling (招待講演), 赤 井一郎, 熊添博之, 五十嵐康彦, Fabio Iesari, 清水亮太, 小松遊矢, 一杉太郎, 松村大樹, 齋藤寛之, 岩満一功, 岡島敏浩, 妹尾与志木, 岡田真人, SPRUC X 線スペク トルスコピー利用研究会, 2022 年 3 月 11 日, オンラ イン開催

ベイズ分光法を用いた Li₅La₃Ta₂O₁₂の軟X線吸収端 近傍構造の仮想計測解析,小川宇宙,山上遼,岩満一 功,熊添博之,岡島敏浩,赤井一郎,日本物理学会第77 回年次大会,2022年3月15日~19日,オンライン開 催

空気曝露前のLi₅La₃Ta₂O₁₂の軟X線吸収端近傍構造 のベイズ分光、山上遼,小川宇宙,岩満一功,熊添博 之,岡島敏浩,赤井一郎,日本物理学会第77回年次大 会,2022年3月15日~19日,オンライン開催

XANES スペクトルのベイズ的スペクトル分解,柏 村周平,片上舜,岩満一功,熊添博之,永田賢二,岡島 敏浩,赤井一郎,岡田真人,日本物理学会第77回年次 大会,2022年3月15日~19日,オンライン開催

X線吸収微細構造 (EXAFS) データに対するスパー スモデリングによる物理情報抽出,五十嵐康彦,熊添 博之, Iesari Fabio, 岩満一功, 岡島敏浩, 妹尾与志木, 赤井一郎,岡田真人,応用物理学会春季学術講演会, 2022年3月22日~26日,青山学院大相模原キャン パス+オンライン開催

EXAFS のスパースモデリング, 赤井一郎, 熊添博之, 五十嵐康彦, Fabio Iesari, 岩満一功,岡島敏浩, 妹尾与 志木, 岡田 真人, 日本化学会第 102 春季大会 (2022 年 3月 23日~26日、オンライン開催), シンポジウム 「化学者のための放射光ことはじめ-XAFS の基礎 と先端応用」2022 年 3月 25日

③ プレスリリース等

2021年6月3日 中日新聞「この人」あいちシンクロトロン光センター所長就任インタビュー, 國枝秀世

2021年9月7日

あいちシンクロトロン光センターHP

「下記論文が 2021 年 7·8 月 Electrochemistry 誌ダ ウンロード数 3 位となり電気化学会より Certificate を頂きました」リチウムイオン電池正極材料 Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O₂の劣化解析, 永見 哲夫, 野本 豊 和, 杉山 陽栄, 立木 翔治, 坂本 廉, 太田 俊明, Electrochemistry, 89(4) pp 363-369 (2021).

2021年12月19日

坂田・早川メダル受賞 第 18 回記念レクチャー名古 屋市科学館、「スペース天文学 X 線観測の歩みと学 んだこと」、 國枝 秀世、 https://www.phys.nagoyau.ac.jp/SakataHayakawa18/index.html

3.3 科研費等外部資金の獲得状況

(1) 科研費

(1) (元) (元) (元) (元) (元) (元) (元) (元) (元) (元	7.11.7223円 日石		交付	(共主)		
4开9元7里日	· · · · · · · · · · · · · · · · · · ·	研究有	直接経費	間接経費	合計	1用右
基盤研究 (B)	高電圧印加に伴う高分 子の階層構造変化追跡 と絶縁破壊機構の解明	山元 博子 (研究分担者)	250 千円 ※1	75 千円 ※1	325 千円 ※1	
基盤研究 (B)	高電圧印加に伴う高分 子の階層構造変化追跡 と絶縁破壊機構の解明	田代 孝二 (研究代表者)	3,250 千円 ※2	975 千円 ※2	4,225 千円 ※2	
基盤研究 (C)	AI 制御で作製された シルクナノファイバー 3D 構造体による iPS 細胞培養	田代 孝二 (研究分担者)	100 千円 ※1	30 千円 ※1	130 千円 ※1	研究代表者: 福井大学・ 山下 義裕教授
基盤研究 (C) (一般)	ダイヤモンド結晶中の 遷移金属不純物と転位 のインタラクション	花田 賢志 (研究代表者)	340 千円 ※2	102 千円 ※2	442 千円 ※2	研究分担者: 名古屋大学・ 田渕雅夫教授 山梨大学・ 有元圭介准教授
若手研究	省エネルギー社会に向 けた近赤外光を吸収す る単分散の窒化チタン ナノ粒子の開発	塚田 千恵 (研究代表者)	400千円	120千円	520千円	
基盤研究 (A) (一般)	ナノ電子プローブ実・ 逆空間走査による統合 データ駆動型材料物性 解析	岡島 敏浩 (研究分担者)	2,000 千円 ※1	600千円 ※1	2,600 千円 ※1	研究代表者: 名古屋大学・ 武藤 俊介教授

※1 研究代表者からの配分額

※2研究分担者への配分額を除く

(2) その他 (委託事業)

事業名	研究課題	研究者	委託契約額	備考
戦略的創造研究推 進事業(CREST)	データ稼動科学による高 次元X線吸収計測の革新	岡島 敏浩 (主たる共同研 究者)	12, 480, 000 円	委託元:国立研究開発法 人科学技術推進機構

4. 施設運営の記録

4 施設運営の記録

4.1 光源の状況

2021 年度における加速器の総運転時間は 1,979 時間であり、放射光ユーザーの利用時間は 1,235 時間であった。計画されたユーザー利用運 転時間に対して光源が運転できなかった時間は 約 39 時間であり、稼働率は約 97.0%であった。 図 1 に、2021 年度における当初計画されたユー ザー利用運転時間に対する光源加速器の運転時 間の割合(稼働率)を1日毎に示す。AichiSRで は、毎年4月に1ヶ月ほどの加速器メンテナンス 期間があり、5月の連休明けからユーザー利用が 行われている。そのほか、10月下旬にメンテナ ンス期間として1週間、年末年始には休日および 調整運転のため2週間ほどユーザー利用運転を休 止している。

2021年7月5日に、500 MHz クライストロン から蓄積リングへの RF 伝送路途中にある RF サ ーキュレータで冷却水が漏水する重故障が発生 し、週末まで運転停止を余儀なくされた。サー キュレータを取り外し、メーカーにて分解調査 を行ったところ、サーキュレータ内部を冷却す る銅ブロックに埋め込まれた冷却水路のハンダ 接合部にピンホールが発生し、ここから漏水し ていたことがわかった。このため、穴埋め補修 を行い、その後現在まで正常に稼働している。 2022 年度に、再発防止と予備の保有を目的とし て、冷却水路の工法を見直した改良型の RF サー キュレータを新造する。 また、10月のメンテナンス中調整運転時には、 超伝導偏向電磁石電源電流を監視する225Aの DCブレーカーに故障が見つかった。同型番品の 流通が止まっていたため、急きょブラケットを 介して同定格ブレーカーに交換した。メンテナ ンス期間中であったため、ユーザー運転への影 響はなかった。

2018 年度より進めている、光源加速器の真空 維持および向上を目的としたイオンポンプ系の 更新作業を、2021 年度も継続して行った。 AichiSRは2022年でファーストライトから10年 目を迎えるが、長期シャットダウンをともなう 大きなトラブルは現在まで発生していない。一 方、サーキュレータ漏水といった老朽化による 故障が目立ちはじめており、また折しも半導体 部品の世界的な供給不足が光源加速器の保守計 画や更新作業へ影響を与えつつある。これら諸 問題に柔軟に対応しながら、今後も安定したユ ーザー利用運転の継続を目指す。

図1 2021年度の稼働率

4.2 ビームラインの状況

(1) 財団ビームライン

BL1N2(軟X線XAFS・光電子分光Ⅱ)

運転状況

2021 年度は、全ての利用において XAFS 測定 で使われ、全電子収量法と部分蛍光収量法の同 時測定および部分蛍光収量法のための XRF 測定、 並びに、エネルギー補正値を測定するための金 の内殻準位の XPS が行われた。2021 年度よりオ ージェ電子収量法も供用を開始したが、アンジ ュレータ光源ではないため光量が少なく測定時 間が長大なため、利用は2件しかなかった。

多くの利用で複数元素が分析された。分析対 象元素は、酸素、炭素、アルミニウム、窒素の 順に多く、この4元素で半数を超えた。酸素・炭 素が多いのは、どの材料系でも分析されるから である。分析される試料は、有機化学材料と電 池材料が同率首位で21%、金属材料13%の順に 多かった(図2)。

② 改善状況

Excel VBA を用いた簡易 XAFS スペクトル表示 プログラムの開発

測定した XAFS スペクトルを表示する際には、 硬 X 線 XAFS ではフリーソフトウェアの Athena、 軟 X 線 XAFS では市販のグラフ表示ソフトウェ アもしくは Athena が主に使用されている。しか し、近年の企業におけるセキュリティー意識の 高まりから、フリーソフトウェアの禁止や、市 販のソフトウェアでも審査が必要となり、測定 データを持ち帰った後の迅速なデータ解析の障 害となる事例が見られる。そのため、BL1N2 の 測定データ専用の、Excel VBA を用いた簡易 XAFS スペクトル表示プログラムを開発した。こ のプログラムは Excel 上で使用でき、GUI を備 え、スペクトルのノーマライズ、表示範囲指定、 複数スペクトル表示等が可能である(図 3)。企 業所属のユーザーにも安心して使用できるプロ グラムとなっている。また、専用ソフトウェア の習熟も不要である。現在は BL1N2 を利用した ユーザーに、無償で配布している。

BL5S1 (硬X線XAFSI)

① 運転状況

BL5S1 は年間通して大きなトラブルなく運用 することができた。図4に2021年度の測定手法 及び測定元素の割合を示す。測定手法毎に見る と透過法4割弱、蛍光法が6割弱利用されてお り、転換電子収量法はわずかであった。測定元 素としては、電子材料や鉄鋼材料でよく用いら れるTi、V、Mn、Fe、Co、Ni、Cuの3d遷移金 属、触媒によく用いられる Pt、環境分析の対象 となりやすい As が多い結果となった。また測定 内容としては、単純な透過法や蛍光法だけでな く、ガスや温度、電気化学的な反応をさせなが らの In-situ 測定やマイクロキャピラリーを用い た微小部測定、2 次元マッピングなども多く利用 された。

図 2 BL5S1 において 2021 年度に利用された (左)測定手法割合、(右)測定元素割合

2 改善状況

SDD 遠隔移動システムの導入

BL5S1では蛍光法で使用する SDD を自動ステ ージ上に設置し、測定ソフトウェアである XafsM2 上で遠隔制御することが可能となった。 従来は SDD のカウント調整を行うために、ハッ チの入退室を繰り返すことで SDD と試料間の距 離調整を行っていたが、遠隔制御システムの導 入によって XafsM2 上でリアルタイムでのカウン ト調整が可能となり、大幅な調整時間の短縮を 達成した(図 5,6)。

図 3 SDD を遠隔で移動させている様子(ライ ブカメラ像)

BL5S2(粉末X線回折)

① 運転状況

BL5S2 は年間通して大きなトラブルなく運用 することができた。利用状況に関しては、社会 情勢による移動制限の影響もあり、測定代行の 割合が例年より多く、約4分の1を占め、全 BL の中で一番多い結果となった(図 7(左))。試料 が標準化されていることや自動化が進んでいる こともその要因と思われる。

測定手法では室温測定が半分以上を占め、次 いで高温測定、低温測定の順であった(図 7(右))。その他、ガス in situ 測定や PDF 解析 といった特殊な測定手法も年々増加の傾向にあ る。

図 5 BL5S2 におおいて 2021 年度に利用された (左)利用状況割合、(右)測定手法割合

2 改善状況

利用効率の向上

BL5S2 では昨年度導入した高速化サンプルチ エンジャーの利用を開始した。位置調整プログ ラムも改良することで、測定以外に要する時間、 試料交換や位置調整の時間を従来の半分程度まで短縮することができた(図8,9,10)。

図6 高速化サンプルチェンジャー

図7 高速化したサンプルチェンジャー

図8 高速化したサンプルチェンジャー

測定に関して BL5S2 で最近多く利用される測 定の一つに PDF 解析がある。この測定法は非晶 質系では短距離構造の解析、結晶質系では局所 構造の乱れ解析に応用される方法である。解析 になじみの無いユーザーにも利用しやすいよう 今年度 PDF 解析ソフトを購入した。 **PDF** 解析で高い空間分解能で短範囲構造を正 確に理解するためには、広角度領域まで測定す ることが望ましい。一時 2θ 回折計の不調により、 その範囲は限られていたが、 2θ 回折計の更新を 行い、現在 132° (Q 値: 18.5)までの測定が可能 となっている。

その他、高温及び低温ガスの吹付に必要な窒 素ガスを生成する「窒素ガス発生装置」を1台追 加した。窒素ガス生成量の関係から、従来3時間 程度かかっていた高温測定と低温測定の切り替 えが、装置を追加したことで1時間以内に短縮さ れ、同日に高温測定、低温測定を行うことが可 能となった。

BL6N1(軟X線XAFS・光電子分光I)

① 運転状況

2021 年度における BL6N1 での分析方法及び 測定試料分類の利用時間割合を図 11 に示す。分 析方法では昨年度と同様に XAFS が 9 割近くを 占めたが、今年度は真空チェンバーを使用した XAFS が昨年度の 9%から 21%に、測定試料分類 では電池材料が昨年度の 7%から 32%に、それぞ れ大幅に増加した。2021 年度に真空チェンバー にシリコンドリフト検出器が導入され、以前よ り電池材料ユーザーなどから要望のあった真空 中での部分蛍光収量 XAFS が可能となったこと が、この一因と考えられる。測定元素の割合は、 S K (34%), P K (28%), Si K (15%), Ag L₃(7%), Cl K(4%), K K (2%), その他の元素(9%)であった。

図 9 BL6N1 において 2021 年度に利用された (左)分析方法割合、(右)測定試料分類割合

2 改善状況

真空チェンバーへの SDD 導入と大気圧チェンバ ーマニピュレータの自動化

2021年度に実施した主な改善点は次の2点であ る。一つ目は、真空チェンバーに1素子シリコン ドリフト検出器(テクノ AP 製 XSDD50-01Be) を導入し、これまで真空チェンバーでは未対応で あった部分蛍光収量法 XAFS 測定に対応した。こ れにより同チェンバーで、全電子収量、部分蛍光 収量法及びオージェ電子収量法の三つの方式によ る XAFS 測定が可能となった。

二つ目は、これまで手動式であった大気圧チェ ンバーの試料マニピュレータと SDD ステージを 自動化し、試料と SDD の位置を PC から調整可能 とした。サンプルプレートは下部導入口からトラ ンスファーロッドで引き上げ、マニピュレータに 接続し、試料電流計測用の電気的接続もこの時行 われる。この機構により、これまで未対応であっ た大気圧用トランスファーベッセル利用時の転換 電子収量 XAFS 測定が可能となった(図 12)。

図 10 自動化した試料マニピュレータ

BL7U (真空紫外分光)

① 運転状況

BL7Uはエンドステーション観測装置の更新を 行ったため、2021年10月下旬からのユーザー利 用開始となった。測定手法としては軟X線吸収分 光(XAS)と光電子分光(PES)が行われてお り、4分の1はこれらを併用した実験となってい る。PESでは内殻光電子分光と価電子帯角度分 解光電子分光がほとんどであり、僅かであるが 光電子回折や仕事関数の測定も行われた(図 13)。

測定元素としては、C,O,N,Siなどの軽元素が 中心となっている。測定対象としては炭素系材 料や電池系材料が多い。BL7Uでは学術利用が7 割を占めており、グラフェンや関連物質も多く 測定された。近年、民間企業の利用でも角度分 解光電子分光を利用した基礎的研究もおこなわ れるようになってきた(図14)。

図 11 全利用シフト数に対する測定手法の割合。4分の1が XAS と XPS の併用となっている。

図 12 BL7Uにおいて 2021 年度に利用された測 定対象元素の割合。価電子帯の測定はほとんど 角度分解光電子分光である。

2 改善状況

エンドステーション観測装置の更新

BL7Uでは、光電子分光・吸収分光測定装置 が設置されているが、経年劣化による動作不良 の解消とより高度な測定を可能にするため観測 装置の更新を行った。新しい装置では試料位置 を制御するマニピュレータをこれまで4軸制御 であったものを6軸(上下・前後・左右・極 角・仰角・面内角)化し、測定配置の自由度が 大きく向上した(図15)。これにより、例えば これまで入射光エネルギーを高くしないと測定 できなかったグラファイトのK点付近の角度分 解光電子分光が分解能の高い低エネルギー側で も観測可能になり、また、試料を取り出すこと なく方位を変更できるようになった。

図 13 (上)試料マニピュレータの試料ステージ、 (下)更新したエンドステーション観測装置の全景。 試料ステージは2段あり、上段4軸、下段6軸 駆動

BL8S1 (薄膜 X 線回折)

① 運転状況

BL8S1 は年間通して大きなトラブルなく供用可 能であった。図 16 は 2021 年度の利用における 使用エネルギー及び使用検出器の割合を示した ものである。利用エネルギーは 9.15keV と 14.37keVの利用が全体の 96%を占めており、残 りは 22.7keV である。試料含有元素に起因する 蛍光X線を低減する目的でエネルギーが選ばれる ケースが多いが、22.7keVについては透過配置で の測定や高 Q-range までの測定を目的として選 択されている。検出器は前年度に引き続きシン チレーションカウンタよりも PILATUS-100K 検 出器が多く利用されている。測定手法では $\theta/2\theta$ 、 入射角固定20に加え、In-Plane回折、残留応力、 反射率、極点図も利用された。また、上記手法 にマッピング、加熱実験を組み合わせた利用も あった。

図 14 BL8S1 において 2021 年度に利用された (左)使用エネルギー、(右)使用検出器

2 改善状況

3連分光結晶の導入

BL8S1 では、結晶を切り替えることでエネル ギーの変更を行っている。3連分光結晶(図17) が BL8S1 に導入されたことにより、分光器チャ ンバーを開放することなく三つのエネルギー (9.15keV、14.4keV、22.7keV)の切り替えが 可能となった。これにより、エネルギー切り替 えに伴う調整時間が短縮され、供用可能なシフ トが増加した。各エネルギーで測定した CeO₂粉 末の回折プロファイルを図 18 に示す。

図 15 3 連分光結晶

図 16 CeO2 粉末回折プロファイル

BL8S3(広角・小角 X 線散乱)

① 運転状況

2021 年度の BL8S3 の利用状況は、2020 年度 と同様に、測定代行の比率が高かった。また、 新規ユーザーも増加した。図 19 に、測定手法及 び各カメラ長の利用率を示す。2021 年度は、斜 入射小角 X 線散乱・広角 X 線回折法の利用が 9 シフト程度と前年度よりさらに減少した。各カ メラ長における利用率では、カメラ長4mの小角 X 線散乱法の利用が一番多く、次にカメラ長 0.2 m がよく利用されていた。各種材料においては、 高分子のユーザーが一番多く、金属材料のユー ザーが増加していた。また、SAXS・WAXD 同 時測定を行う実験のユーザーも増加した。

図 17 BL8S3 において 2021 年度に利用された (左)測定手法割合、(左)各カメラ長の利用率

2 改善状況

利用可能なカメラ長の拡大及び新規検出器の 導入

2020 年度に、試料変更にかかる時間を削減し、 多くの測定を可能にするために、多連サンプル チェンジャーを導入したが、Z ステージの移動に 時間がかかっており、PILATUS を利用した実験 には適応できていなかった。そこで、移動速度 が速いZステージを導入し、実験ハッチの開閉回 数を減らし、さらなるスムーズな測定を可能に した。

BL8S3では、150 nm以下の構造解析が可能で あったが、材料の機能の発現を理解するために、 さらなる大きな領域での階層構造の解析が、ユ ーザーからの要望としてあった。そのため、実 験ハッチを最大限利用し、最大カメラ長を6.5 m まで拡大することにより、250 nm以下の構造解 析を可能にした。また、大面積の PILATUS 2M を導入した。大面積 PILSTUSの導入は、高 q 領 域における SN の向上および配向構造の評価を可 能にする。2022 年度から、カメラ長 6.5 m およ び PILATUS 2M の運用を開始する(図 20,21)。

図 18 導入した 6.5mカメラ長

図 19 PILATUS 2M 検出器

BL11S2 (硬 X 線 XAFS Ⅱ)

① 運転状況

BL11S2 は年間を通して大きなトラブルなく運 用することができた。図 22 は、2021 年度に BL11S2 で測定された元素の割合である。Cu を 始めとした 3d 遷移金属の測定が多かった。測定 手法は透過法と蛍光収量法の ex-situ 測定が多か ったが、ビームラインのガス設備を用いた insitu 測定や、クライオスタットを用いて試料を冷 却しながらの測定等も実施された。

図 20 BL11S2 において 2021 年度に測定された 元素の割合

② 改善状況

広がったシンクロトロン光を利用した 2 次元及 び 3 次元 XAFS 測定

後置ミラーとして、従来のベンドシリンドリ カルミラーに加えて、プレーンミラーを追加し た。これにより、集光したシンクロトロン光だ けでなく、広がったシンクロトロン光も利用可 能になった。図 23 のように 2 次元検出器を組み 合わせることにより、2 次元および 3 次元 XAFS 測定が可能である。図 24 は、Cu₂O、CuO、BN の混合ペレットの 2 次元 XAFS 測定結果である。 サンプル各点での XAFS スペクトルを短時間で 分析することができる。

図 21 2 次元および 3 次元 XAFS 測定時の構成

図 22 混合ペレットの 2 次元 XAFS 測定結果

(2) 愛知県ビームライン

BL8S2(X線トポグラフィ・X線CT:愛知県)

① 運転状況

BL8S2 では、X 線トポグラフィ、LIGA (X 線 リソグラフィ)、2 次元ロッキングカーブ測定 (2D-RC)、X 線照射実験、X 線 CT 測定、2 次 元 XAFS (2D-XAFS)、CT-XAFS など、様々な 種類の実験が可能である。2017~2018 年度は X 線トポグラフィ (2D-RC を含む)の利用が半分 以上を占めていたが、2019~2020 年度は X 線 CT 実験の利用が増加し全利用シフトの半数以上 を占めた。2021 年度は、X 線 CT 実験の利用が 全利用シフトの半数以上を占め、X線トポグラフィ実験の利用が4分の1近く行われ、その他、 LIGA、X線照射実験、2次元XAFSの利用が行われた(図25)。企業、大学、研究所、公設施設、当財団から利用された(図26)。

図 23 BL8S2 において 2021 年度に利用された 実験手法内訳

図 24 BL8S2 における 2017~2021 年度の利用 者内訳

2 改善状況

位相 CT 測定システム

BL8S2 では、生体材料、植物試料、軽元素材 料など、吸収コントラストX線CT測定では観察 困難な試料の非破壊3次元微細構造観察を可能に するために、位相コントラストX線CT(位相 CT)測定システムの構築を行った(図27)。

位相 CT 測定は、X 線平行化のためにブラッグ 結晶で X 線を回折させ、試料の X 線透過像から X線位相像を取り出すためにラウエ結晶でX線を 回折させるが、2 度のX線回折により X 線強度が 大幅に低下するため測定に時間がかかるという 難点がある。X 線強度低下を抑制して測定時間を 短縮するために、ブラッグ結晶不使用の位相 CT 測定の整備を行い測定時間短縮が可能となった。 その反面、X線の平行性が低下し位相像のコント ラストと空間分解能が低下する。

図 25 位相 CT 測定システム

(3) 名古屋大学ビームライン

BL2S1(単結晶X線回折:名古屋大学)

① 運転状況

BL2S1 は老朽化した機器の故障が相次いで発 生し、2021 年度の運用に影響が発生した。また、 二つの分光結晶を装填可能な分光器の導入に向 けたビームラインスタディを実施したため、ユ ーザーに提供したシフト数が前年度より減少し た(図 28)。BL2S1 ではダイアモンドアンピル セルを用いた高圧測定が4割程度利用されている。 また高エネルギーのX線の利用が6割に達してい る(図 29)。測定モード変更やX線のエネルギ ー変更に伴うビームライン運用手順の高速化や、 サンプル損傷の少ない高エネルギーX線 (16.53keV)の品質改善を実施し、提供シフト 数の減少を補った。上記の対応により、ビーム ライン利用者の研究成果の量は維持していると 見込まれる。

図 26 過去 2 年における提供シフト数の推移

図 27 BL2S1 において 2021 年度に利用された (左)測定方法の分布、(右)X 線エネルギーの分布

2 改善状況

二次元ピクセル検出器の導入に向けて

ビームラインが正式に稼働した 2015 年度から、 大面積の二次元 CCD 検出器で硬 X 線回折測定を 提供してきた。約 10 年間の運用に伴い、高エネ ルギーのX線を最小のノイズで高速測定できる高 感度の検出器へ切り替える方針を決定した。 DECTRIS と RIGAKU の検出器の検証や、 PILATUS 1M の稼働に向けて、古い ADSC Q315r 検出器をビームラインから搬出した(図 30)。現在は ADSC Q270 を運用し、PILATUS 1M を稼働させるためにソフトウェアを更新して いるところである。

図 28 (上)BL2S1 から搬出した Q315r 検出器 (ADSC)、(下)BL2S1 で検証したピクセル検出器 (DECTRIS)

(4) 企業専用ビームラインBL2S3 (デンソー)

① 運転状況

BL2S3 は XAFS、XRD、X 線 CT を切り替え て利用している。図 31 に 2021 年度のそれらの 利用割合を示す。なお、それぞれ測定以外に装 置整備や技術開発利用も含んでいる。装置毎に 見ると X 線 CT で 5 割程度利用しており、次に XRD で 3 割程度利用していた。測定元素として は、XAFS では、Fe、Ni、Cu などの 3d 遷移金 属が多かった。また測定内容としては、透過法 の測定が主体であったが、開発した XAFS イメ ージングを利用した測定でも多く利用した。 XRD では、昨年度に引き続き安定的な利用を目 指した整備利用が主体であった。X線 CT では、 実材料の内部構造イメージングに加え、高分解 能化を目指した技術開発での利用が増えた。

図 29 BL2S3 における 2021 年度の各装置利用 割合

2 改善状況

ビームライン機器自動監視システムの構築

ビームライン管理では使用の前後、管理項目 に対して日常点検を実施している。

今回、ビームライン管理項目の一部である真 空度維持等に関わる重要な機器を自動監視でき るシステムを構築した(図 32)。

本システムは主に真空度、IP 電流、冷却水流 量・温度、ポンプ・TMP 電力、Be 窓酸素濃度・ 流量、エア圧力を管理者が任意に設定した間隔 で(図 33) でデータ取得が可能となり、管理規 格を外れると通知する機能も付加した。

これにより、日常点検の簡素化に加え、設備 状態のトレンドを捉え予防保全に繋がる環境も 備わった。

							-
冷却水			-	828			07.84
W-Mask:我里 (Venie)	3.104	MO定量 (Merin)	0.764	1VG (%)	3e-0	51/3 (Pa)	25+6
W-ABS(20 (1/min)	8.091	MORCE (TO)	25.0	240 (Pa)	2.6e-9	୧୦/ସ ଫଳ୍ଲ	250-6
w-beit≝ (i/min)	3.376	wiet出压力 0.4Pw)	9.19	3VQ-1 (Ps)	4.4e-0	799-1 (Pa)	3.7e-6
weint)读量 (U/min)	1.514	0006212 (I/min)	0.889	3VG-2 (Ps)	4.44-7	7V3-2 (Pa)	3.46-8
WSCALLE (Vmir)	1.751	COMP(C) (10)	25.0	4V0-1(Ps)	33e-6		
		CONFLECT: 04Pa)	0.43	4v(3~2 (Ps)	4.1e-7		
三相2007電力(0	PMin) -			₩ 18200V電力(#	, TMPN		
三相電((0))	295.0			筆相電(E (v)	207.2		
D-OFYTELE (A)	1.416	6-07/182 (A)	1.410	1-P182(A)	0.167	5-TMP102 (A)	0.352
4-0RY1電流(A)	1.457	7-DRV1笔(主)(A)	1522	3-114P4E/8 (A)	0.961	6-1MP12型流(A)	0.721
4-5月1日電流(A)	1.390	7-0RV2世流(A)	1.434	4-11/P1電流(A)	0.063	7-11/P1電流(A)	0.343
5-DRY電流 (A)	1.43			4-756-2電波(00)	0.347	7~1MP2電波(A)	0.324
2713				- tom			
Cutria (10)	-105.00	T congr (*0)	09.00	De信02建筑(N)	0.005	エアー住力 0.6%)	0.700
Power (W)	100.66	T head ("0)	38.40	Be/图He/通量 (SCCM)	5 798	SPEE (n4)	2.4
手入力データ(1	直近入力:)					
3-TMP温度(①)		4-TMP2温度(℃)		6-TMP1遵信(10)		7~TMP1温度(%)	
4-11/11温度(10)		5-TMP:温度(10)		6-114-2星度(位)		7-11/192温度(10)	

図 30 自動収集データ一覧

	タ収集プログラム		+		×
収集間隔:	1時間 ~				
データフォル s	C:¥Users¥control¥Docur	nents¥python¥Bl2s3Da	ataLog	ging	
手入力	1	データ表示	グ	ラフ表示	; [

図 31 収集間隔 設定画面

BL11S3 (デンソー)

① 運転状況

BL11S3 は 2021 年度、光源の長期停止期間を 利用して工事を進め、およそ 1 年かけて 2022 年 4 月に計画通り立ち上げ工事全てを完了している。 2021 年 4 月に実験ハッチ及びケーブルラダーの 建設、8 月にビームライン機器の設置、11 月に CT 装置の設置とインターロックの構築、漏洩チ ェックを完了し、12 月末よりダイレクト光の利 用を開始した。また、2022 年 4 月には、残され ていた M0、M1 ミラーのインストール工事を完 了し、全ての工事を完了した。

図 34、35 に BL11S3 実験ハッチの外観写真と ハッチ内の実験装置の写真をそれぞれ示す。 BL11S3 は X線 CT 専用のビームラインとして構 成されており、ハッチ内装置架台上には、CT 用 の回転試料ステージ、検出器ステージ等が備え られている。ラミノグラフィ測定にも対応して おり、試料ステージに傾斜機構が備えられてい る。ビームラインの光学素子としては、フラッ クス向上を狙った平行化ミラー(M0)や、高エ ネルギーカットを目的とした M1 ミラーを設置し ており、これらの使い分けにより多様な材質の CT 測定に対応したビームラインとなっている。

2022 年度はミラーの調整を完了させ、フルス ペックでの稼働を目指し整備を進める。

図 32 BL11S3 実験ハッチ外観

図 33 実験装置

4.3 利用促進

(1) 利用制度の概要

年6回の定期利用募集、年2回の長期利用募集 に加え、測定代行および成果公開無償利用事業 を実施した。詳細を以下に示す。

【定期利用】 年6回募集

第1期

- 利用期間 2021年5月11日(火)
 ~2021年5月28日(金)
 申込期間 2021年4月1日(木)8時45分
- ~2021年4月5日(月)正午
- ※2021 年 4 月 14 日(水)より、随時利用に切り替 えて募集を再開

第2期

- 利用期間 2021年6月1日(火) ~2021年7月30日(金)
- 申込期間 2021年5月6日(木)8時45分 ~2021年5月10日(月)正午
- ※2021 年 5 月 14 日(金)より、随時利用に切り替 えて募集を再開

第3期

- 利用期間 2021年8月18日(水)
 ~2021年9月30日(木)
 申込期間 2021年7月1日(木)8時45分
 ~2021年7月5日(月)正午
- ※2021 年 7 月 16 日(金)より、随時利用に切り替 えて募集を再開

第4期

- 利用期間 2021年10月1日(金) ~2021年11月30日(火)
- 申込期間 2021年9月1日(水)8時45分 ~2021年9月3日(金)正午
- ※2021 年 9 月 10 日(金)より、随時利用に切り替 えて募集を再開

第5期

- 利用期間 2021 年 12 月 1 日(水) ~2022 年 1 月 28 日(金)
- 申込期間 2021年11月1日(月)8時45分 ~2021年11月4日(木)正午
- ※2021 年 11 月 12 日(金)より、随時利用に切り 替えて募集を再開

第6期

- 利用期間 2022年2月1日(火) ~2022年3月31日(木)
 申込期間 2022年1月6日(木)10時 ~2022年1月7日(金)17時
- ※2022 年1月18日(火)より、随時利用に切り替 えて募集を再開

【長期利用】年2回募集

前期

利用期間	2021年5月11日(火)
	~2021年9月30日(木)
申込期間	2021年4月1日(木)8時45分
	~2021年4月5日(月)正午

後期

利用期間	2021年10月1日(金)
	~2022年3月31日(木)
申込期間	2021年9月1日(水)8時45分
	~2021年9月3日(金)正午

【測定代行】

定期利用募集期間に準じて受付

【2021 年度 あいちシンクロトロン光センター 成果公開無償利用事業】

利用期間 2021年6月1日(火)
 ~2021年11月30日(火)
 申込期間 2021年3月22日(月)
 ~2021年4月27日(火)

(2) 産業利用コーディネータの活動

1年間を通して、利用相談の対応や研究会の開 催などを行った。新型コロナウイルス感染症の 影響により、AichiSR での会議はオンライン、セ ミナーなどのイベントもオンライン併用開催が 一般化しつつある。

【利用促進に関する取組】

○利用相談、技術指導及び個別訪問の実施

産業利用コーディネータやアドバイザーに よる利用相談、企業等への活用方法の提案等 を実施。

・利用相談等(電話相談、メール等含む)

○ 利用者研究会等の開催

未利用企業等に対し、入門講習会や XAFS 等の測定手法ごとに計測体験を実施。

- ・X 線回折、X 線散乱入門講習会(11/15)、
 測定実習(11/16) (県主催、AichiSR 共催)
- ・EXAFS 解析講習会(9/3)
 解析ソフトを用いた EXAFS の解析方法の紹介(名大主催、AichiSR・県共催)
- ・実地研修
 X線薄膜・表面回折散乱(11/25, 2/25)、
 軟X線 XAFS(7/28)、

硬 X 線 XAFS(7/26, 9/1, 9/14, 10/21)

- 粉末X線回折(12/7, 12/14, 3/3)、
- 広角・小角散乱(3/17)
 - (県主催、AichiSR 共催)
- 〇ユーザー向け「放射線業務従事者教育訓練」

講習会の実施

- 新規教育(3 時間)、再教育(1.5 時間)の講習会 を毎月定期的に無料で実施。
- ・開催回数:24回
- ・受講者:397名

[2020年度 24回 326名]

【普及啓発に関する取組】

- ○セミナー等の開催・関係学会等への参加等
 - 新型コロナウイルス感染症の影響により、 機会は多くなかったが、可能な範囲で活動を 行った。
 - ・2021 年度第 1 回 AichiSR シンクロトロン光
 産業利用セミナー(オンライン併用)(2/28)
 を開催
- ○展示会への出展及び見学者の受入れ (展示会)
 - ・メッセナゴヤ 2021 (オンライン併用)
 (11/1~13)
 - ・第35回日本放射光学会年会・放射光科学合同シンポジウム(オンラインのみ)(1/7~9)
 (見学者)126名 [2020年度 147名]

(3) 利用者からの要望への対応

年間を通じて技術的な要望を承っており、具体的に対応した37件について以下に詳細を示す。

BL 名		改善内容(2021)
	1	オージェ電子収量法 XAFS 測定システムの開発による、新測定手法の実装
BL1N2	2	専用グラフ表示ソフトウェアの開発による、ユーザーの XAFS 解析の容易化と利便 性向上
	3	サンプル位置確認用システムの開発による、測定位置の可視化と精度向上
	4	器具・試料移送用ツールワゴンの整備による、BL・準備室間の連携性の向上
	1	測定用ソフト XafsM2 の改良
	2	参照試料の追加(Fe、Ni、Cu系試料)
BL5S1	3	高次光除去ミラー導入による低エネルギー領域測定の高度化
DLUGI	4	7chSDDの試料間距離の遠隔操作システム導入による距離調整の簡易化
	5	機器通信経路の改良によるハッチ内の作業性向上
	6	DXM 用チラーの増設による冷却水流量の安定化
	1	試料搬送、試料位置調整の各プログラム見直しによる測定効率の向上
	2	PDF 解析ソフト購入による解析効率の向上
BL5S2	3	検出器サーバー改善による測定の安定化
DIGGZ	4	Huber回折計改善による測定の安定化
	5	試料ステージの1軸追加による測定効率の向上
	6	試料回転ステージ高速化による測定効率の向上
	1	真空測定チェンバーへの半導体検出器導入による真空下での部分蛍光収量 XAFS への対応
	2	試料位置調整機構のモーター駆動化による大気圧 XAFS 測定の遠隔制御化及び測定 効率並びに精度の向上
BL6N1	3	試料導入機構の改良による大気圧 XAFS 測定時の試料交換待ち時間の短縮化(30分→15分)
	4	新規電流取出機構の導入による大気圧下での大気非暴露転換電子収量 XAFS への対応
	5	防振ダンパ導入による光量モニタ用メッシュと常設標準試料の試料電流計測時に混 入する振動ノイズの低減
	1	6 軸回転試料ステージ導入による測定配置の拡大
	2	試料冷却クライオスタット更新による冷却速度の改善
BL7U	3	試料マニピュータ更新による試料位置の安定化・低振動化
	4	試料ステージ2段化による測定効率の改善
	5	ビームライン光学アライメント再調整によるビームスポットサイズの改善
	1	回折角上限を 138°から 160°へ拡張
BL8S1	2	試料観察カメラの振動対策
	3	解析サポートのための結晶相データベースの更新
	1	PILATUS を利用した連続測定を可能にするため、新規Zステージを導入
	2	高q領域の広角X線回折測定を可能するため、新規の真空窓を作成
	3	安定した測定を可能にするため、HUBのアップデートによりデータ転送を高速化
BL8S3	4	カメラ長変更にかかる時間を短縮し、マシンタイム内での階層構造評価を可能にす るため、新規真空ポンプを真空ラインへ追加
	5	バックグランドの低減した測定を可能にするため、フォトダイオード入りビームス トッパーを改造
	1	プレーンミラー導入による 2 次元 XAFS および CT XAFS への対応
BL11S2	2	冷却加熱ステージ Linkam 導入による温調手段の多様化
	3	転換電子収量測定セルの改良による測定の効率化

(4) 放射線業務従事者教育訓練

放射線障害防止法では、放射線取扱事業者に 対し、放射線業務従事者への新規教育と年1回 の再教育を義務付けている。科学技術交流財団 では、2012年10月から、AichiSR利用者を対象 に、同法に対応した放射線業務従事者教育訓練 講習会を定期的に開催している。

2021 年度の放射線業務従事者教育訓練講習会の開催日および受講人数の一覧は下表のとおり。

講習内容:新規教育は①~③、再教育は③のみ

- 放射線障害の防止に関する法令及び放射線 障害予防規程(60分)
- 2 放射線の人体に与える影響(30分)
- ③ 放射線同位元素等又は放射線発生装置の安
 全取扱い(新規・90分)

または

放射線同位元素等又は放射線発生装置の安 全取扱い・法令・放射線の人体に与える影 響(再教育・90分)

会場:あいちシンクロトロン光センター

2階会議室(オンライン併用)

(単位:名)

	字齿口	新規	教育	再教	스러	
	<u></u> 夫肥口	対面	オンライン	対面	オンライン	合計
1	2021年 4月14日	2	14	4	3	23
2	4月28日	8	6	2	10	26
3	5月12日	6	2	3	16	27
4	5月26日	3	7	3	8	21
5	6月 9日	4	4	2	9	19
6	6月23日	4	8	4	8	24
7	7月 7日	3	2	1	12	18
8	7月21日	2	10	2	6	20
9	8月 4日	2	6	0	6	14
10	8月18日	0	6	2	8	16
11	9月 8日	4	11	1	6	22
12	9月22日	0	6	0	9	15
13	10月13日	1	13	1	6	21
14	10月27日	0	7	1	2	10
15	11月10日	0	10	0	3	13
16	11月25日	0	4	1	2	7
17	12月 8日	0	6	1	4	11
18	12月22日	0	5	0	7	12
19	2022年 1月12日	0	3	1	3	7
20	1月26日	0	2	0	3	5
21	2月 9日	0	3	1	6	10
22	2月22日	0	4	1	9	14
23	3月 9日	0	4	2	15	21
24	3月23日	0	7	1	13	21
	合計	39	150	34	174	397

(5) 見学者数

2021年度の AichiSR 見学者数は下表のとおり。

(単位:名)

					所属	内訳		
			一般	企業	大学	行政	シンクロ 関係	その他
2021年	4月	2	2	0	0	0	0	0
	5月	10	1	1	1	7	0	0
	6月	19	0	19	0	0	0	0
	7月	8	0	5	0	3	0	0
	8月	22	8	1	3	8	2	0
	9月	10	0	7	3	0	0	0
	10 月	13	0	6	2	5	0	0
	11 月	14	0	4	0	10	0	0
2022年	12 月	4	0	2	0	2	0	0
	1月	5	0	1	1	3	0	0
	2月	6	0	3	3	0	0	0
	3月	13	0	0	10	3	0	0
合計		126	11	49	23	41	2	0

5. 研究会・セミナー

5 研究会・セミナー

新型コロナウイルス感染症の影響により機会は多くなかったが、可能な範囲で活動を行った。2021年 度に開催された研究会・セミナーは以下のとおり。

5.1 講習会·研究会

タイトル	シンクロトロン光利用者研究会 シンクロトロン光計測入門講習会		
実 施 日	2021年11月15日(月) 13:30~16:00:講義		
	2021年11月16日(火) 10:00~17:00: 実地研修		
会 場	オンライン開催		
内 容	11月15日(月)		
	 X線回折入門【X線回折の基礎と粉末X線構造解析】 		
	講師:豊田工業大学スマートエネルギー技術研究センター		
	教授 竹内 恒博		
	 X線散乱入門【小角 X線散乱測定による構造解析】 		
	講師:豊田工業大学 名誉教授 田代 孝二		
	・ AichiSR 回折・散乱ビームラインの最新情報		
	11月16日(火)		
	・ ビームラインの見学と紹介		
	・測定・解析		
	参加者の持込試料又はデモ試料を用いて、X線回折又はX線小角散乱測定を実施		
	測定したデータを用いて解析を行い、データの見方等の説明		
参加者	145 名		

P	イト	ル	2021 年度 EXAFS 解析講習会
実	施	日	2021年9月13日(月) 10:00 ~ 17:30
会		場	オンライン開催
内		容	【EXAFS 入門】
			・ EXAFS の原理から解析方法の考え方
			講師:名古屋大学シンクロトロン光研究センター 教授 田渕雅夫
			【解析ソフト Athena と Artemis を用いた EXAFS の解析方法の紹介】
			・ Athena を用いた EXAFS 解析の前準備(バックグラウンドの決定等)の方法
			・ Artemis を用いた EXAFS スペクトルの解析方法
参	加	者	34 名

5.2 シンクロトロン光利用者研究会【実地研修】

あいち産業科学技術総合センターと共催で、実習形式の実地研修を開催した。

	実	ミ施日	内容	参加者数
	第1回	7月26日	硬 X 線 XAFS(透過法以外)(BL5S1)	2名
	第2回	7月28日	軟X線XAFS (BL6N1)	4名
	第3回	9月 1日	硬X線XAFS(透過法)(BL5S1)	2名
	第4回	9月14日	硬X線XAFS(透過法)(BL11S2)	1名
	第5回	10月21日	硬X線XAFS(透過法)(BL5S1)	1名
	第6回	11月25日	X線薄膜・表面回析散乱(BL8S1)	1名
	第7回	12月7日	粉末 X 線回析 (BL5S2)	3名
	第8回	12月14日	粉末 X 線回析 (BL5S2)	1名
	第9回	2月25日	X線薄膜・表面回析散乱(BL8S1)	1名
	第 10 回	3月 3日	粉末 X 線回析 (BL5S2)	1名
	第 11 回	3月17日	広角・小角散乱(BL8S3)	2名
			参加者合計	19 名
主 催	あいち産業	科学技術総合セン	/ター、あいちシンクロトロン光センター	

5.3 セミナー

タイトル	2021 年度第 1 回 AichiSR シンクロトロン光産業利用セミナー	
実 施 日	2022年2月28日(月)	
会 場	ウインクあいち、オンライン併用	
内 容	 【講演】 XAFS 利用の幅を広げる 2D/3D XAFS 測定技術の AichiSR での展開 SPring-8 における X 線イメージング技術 硬 X 線光電子分光法(HAXPES)測定技術の特徴と活用事例の紹介 電子材料用熱硬化性樹脂材料/金属界面の解析 SDring-8 利用の利用本は、第 	
参加者数	145名(オンライン含む)	
主催	(公財)科学技術交流財団、(公財)高輝度光科学研究センター	

5.4 第10回あいちシンクロトロン光センター事業成果発表会

2021年度成果公開無償利用事業として採択した 16課題の成果発表会を開催した。当初の開催予定は 2022年3月であったが、新型コロナウイルス感染症の社会的状況を鑑み、2022年4月に開催した。

タ	イト	ル	第10回あいちシンクロトロン光センター事業成果発表会		
実	施	日	2022年4月26日(火) 10:30~16:40		
会		場	あいち産業科学技術総合センター 講習会室、オンライン併用		
内		容	【午前の部】 10:30~11:55(10:30~10:40 挨拶等)		
			「単分子検出を可能とする多層グラフェンバイオセンサーの開発」		
			東洋大学 根岸	良太	
			「絶縁性有機材料の NEXAFS 測定を可能にする金属蒸着条件の検討」		
			JSR株式会社 豊田	由衣	
			「X線回折による超高精細スクリーン印刷用のステンレスメッシュの研究開発」		
			アサダメッシュ株式会社 青木	真理	
			「全固体電池の XAFS 解析」 株式会社日産アーク 伊藤	孝憲	
			「SiO ₂ /Siの GI-PDF (grazing-incidence pair distribution functions) による局所棒	 歩造解	
			析」 株式会社日産アーク 朱	哲昊	
			【午後の部】13:30~16:40		
			「冷間鍛造の潤滑被膜形成プロセスにおけるウェットブラストによる素材前処理の)効果	
			検証」 マコー株式会社 橘	和寿	
			「X線源を相補利用した電子分光測定による高分子材料の表面化学構造に関する深さ	5依存	
			性評価」 株式会社メニコン 伊藤	恵利	
			「軟X線XAFSスペクトルからの物性予測」 株式会社デンソー 森口	七瀬	
			「X線イメージングによる口腔内崩壊錠(OD錠)の導水過程及び崩壊挙動観察」		
			株式会社ダイセル 高尾	直樹	
			「軟X線XAFS 並びに光電子分光法による ALPS 沈殿系廃棄物のリン酸塩		
			固化体構成元素の電子状態解析」 東京工業大学 中瀬	正彦	
			「蛍光 XAFS 測定における時間空間分解能の向上手法の開発」		
			株式会社 SOKEN 高井	智明	
			結晶構造解析によるプロスタグラジン D2 合成酵素阻害剤のスクリーニング」		
			株式会社丸和栄養食品 伊中	浩治	
			「粉末冶金法により作製した FeAl 基 ODS 焼結体のシンクロトロン光 XRD 解析」		
			豊臣熱処理工業株式会社 橋井	光弥	
			粉体 Materials Genome プロセスによる全固体電池用固体電解質の探索」		
			東京理科大学 滕本 憲	景次郎	
			【あいち産業科学技術総合センター成果発表】		
			「粉末粒子径が XAFS スペクトルの定量性に及ぼす影響」		
			あいち産業科学技術総合センター 野本	豊和	
			「あいちSRにおけるCT技術の開発(知の拠点重点研究ブロシェクトⅢ期成果)」	1	
			あいち産業科学技術総合センター 杉山	信之	

参	加者	186名(オンライン含む)
主	催	愛知県、(公財)科学技術交流財団
協	賛	名古屋大学シンクロトロン光研究センター

5.5 名古屋大学シンクロトロン光研究センターシンポジウム

タイトル	第 10 回名古屋大学シンクロトロン光研究センターシンポジウム		
実 施 日	2022年1月17日(月) 13:00~18:00		
会 場	オンライン開催		
内 容	BL2S1:名大ビームラインにおける高圧タンパク質結晶構造解析		
	永江 峰幸 名古屋大学シンクロトロン光研究センター		
	BL5S2:超高圧下における新物質合成と放射光X線構造解析		
	佐々木 拓也,丹羽 健,長谷川 正 名古屋大学大学院工学研究科		
	BL8S1:高分子境界膜の潤滑メカニズム解明に向けたシンクロトロン光計測の応用		
	伊藤 伸太郎 名古屋大学大学院工学研究科, JST さきがけ研究員		
	BL8S2:BL8S2に構築したX線暗視野法に基づく屈折コントラスト CT撮影システムと		
	ソフトマテリアルへの応用		
	砂口 尚輝 名古屋大学大学院医学系研究科		
	BL8S3:X線小角散乱および単結晶解析で探るアクチン繊維切断タンパク質フラグミンの		
	作用機序		
	武田 修一 1, 小田 俊郎 2, 杉本 泰伸 3		
	1.岡山大学異分野基礎科学研究所 2. 東海学院大学 3.名古屋大学		
	あいちシンクロトロン光センター 光源加速器の現状		
	髙嶋 圭史 名古屋大学シンクロトロン光研究センター		
	講演 竹田 美和 あいちシンクロトロン光センター		
参加者	124 名		
主 催	名古屋大学シンクロトロン光研究センター		
協 賛	あいちシンクロトロン光センター		

6. 成果報告書

6 成果報告書

6.1 公共等利用成果報告書

AichiSR では、大学、公設試験研究機関等の公共的 な団体による利用を対象とした、公共等利用の制度を 設けており、一般利用の利用料の半額で利用できる。 ただし、成果公開を前提としており、成果報告書の提 出が義務付けられている。「2021 年度公共等利用」で 成果報告書が提出された課題は以下のとおりである。

なお、成果報告書の内容は、AichiSR ホームページ で公開されている。 【掲載ページURL】

https://www.aichisr.jp/publication/report/2021/1.html

実験番号	実 験 名	所属・実施責任者
202101001	GaN の非専有状態電子状態測定	(国研)物質・材料研究機構・山下良之
202101029	水電解触媒の軟X線吸収分光解析	立命館大学・折笠有基
202102015	レーザー加工金属の表面状態観察	宮城県産業技術総合センター・斎藤雅弘
202102100 %	X 線吸収分光によるリチウム硫黄電池用正極のイオン伝導パス	問 <u>用</u> 十心, 世國
202102100 %	形成および新規蓄電メカニズムの解明	<u> 美四八子・司員</u>
2021D2028	水電解触媒の軟X線吸収分光解析	立命館大学・折笠有基
202103004	Mg をドープした GaN の非専有状態電子状態測定	(国研)物質・材料研究機構・山下良之
202102016	X 線吸収分光によるリチウム硫黄電池用正極のイオン伝導パス	四日十心・世界
202103016	形成および新規蓄電メカニズムの解明	<u> 美四八子・司員</u>
202103048	蓄電材料の酸素の電子状態分析	東北大学・小林弘明
202103053	水電解触媒の軟X線吸収分光解析3	立命館大学・折笠有基
202102007	チャーマズゴ担业庁が业価値に会ち上て空ま市八の測定	(地独)東京都立産業技術研究センター・染川
202103067	ナダニア糸可視光心谷光肥煤に呂有する窒素成分の測定	正一
202104002	ジアミドアミン系吸着材の吸着前後の窒素周りに着目した構造	事言初主十学, 松清沙明
202104092	解析	来京和IT八子· 松油伯列
202104093	溶融塩蒸留残留物を対象としたセリウムの原子価評価	東京都市大学・松浦治明
202104100	ゼオライト触媒の活性点の局所構造解析	名古屋大学・織田晃
2021L4003	水電解触媒の軟 X 線吸収分光解析 4	立命館大学・折笠有基
202105001	石炭・石炭灰(フライアッシュ・クリンカ灰)に含まれるホウ素	事言初去十学, 松清海阳
202105001	の化学形態分析	来京和印入子· 松油伯列
202105002	ADAAM 吸着材における XANES 構造比較~希土類単元系と共	事言初去十学, 松清沙明
202105002	存系~	東京和印入子・松浦行列
202105007	スピネル構造中の Mg サイトの局所構造解析	名古屋大学・織田晃
202105050	溶融塩蒸留残留物のセリウム周りに着目した構造解析	(国研)日本原子力研究開発機構・高畠容子
2021L5003	水電解触媒の軟 X 線吸収分光解析 4	立命館大学・折笠有基
202106035	4H-SiC(0001)中ドーパントの非専有状態電子状態測定	(国研)物質・材料研究機構・山下良之
202106041	ゼオライト骨格中ヘテロ原子の局所構造解析	東北大学・西堀麻衣子
202106045		(一財)ファインセラミックスセンター・吉田
202100040	エルヤンセアル 倒脂の XAFS 測定	要
202106060	酸化物電極触媒の化学状態分析	千葉工業大学・髙橋伊久磨

BL1N2 (軟X線XAFS・光電子分光 II)

※は公開延期の申請があったもの

202106106	リン酸鉄リチウム酸化物材料の酸素の電子状態分析	東北大学・小林弘明
2021L6003	水電解触媒の軟X線吸収分光解析4	立命館大学・折笠有基

BL2S1 (単結晶 X 線回折:名古屋大学)

実験番号	実 験 名	所属・実施責任者
2021N1001	高圧下で合成された微小試料の常圧および高圧その場回折測定: 超高圧下における新規遷移金属炭化物の合成	名古屋大学・丹羽健
2021N1002	加圧による結晶性向上と高エネルギー構造の捕捉	名古屋大学・永江峰幸
2021N2001	高圧力下における水素結合性結晶の構造変化-氷 VII 相とガス ハイドレートーその4	岐阜大学・佐々木重雄
2021N2002	高圧下で合成された微小試料の常圧および高圧その場回折測定: 新規Mn-Sn系化合物の超高圧合成の試み	名古屋大学・丹羽健
2021N2003	光エネルギー変換の機構解明に向けた光合成蛋白質の結晶構造 解析	名古屋大学・梅名泰史
2021N2004	Toward automated and optimized operations of hard x-ray diffraction experiments	名古屋大学・ChavasLeonard
2021N2005	緑内障原因タンパク質の結晶のソーキングによる影響評価	学習院大学・友池史明
2021N2006	加圧による結晶性向上と高エネルギー構造の捕捉	名古屋大学・永江峰幸
2021N2008	多剤耐性に関わる細菌タンパク質の結晶学的研究	名古屋市立大学・加藤晃一
2021N2009	Toward automated and optimized operations of hard X-ray diffraction experiments	名古屋大学・ChavasLeonard
2021N2010	加圧による結晶性向上と高エネルギー構造の捕捉	名古屋大学・永江峰幸
2021N2011	ゲルに包埋されたタンパク質結晶を用いた構造解析	名古屋大学・友池史明
2021N3001	高圧下で合成された微小試料の常圧および高圧その場回折測定: Co-N系試料の熱膨張挙動の調査	名古屋大学・丹羽健
2021N3002	Lys48型ユビキチン鎖変異体のX線結晶構造解析	名古屋市立大学・加藤晃一
2021N3004	光エネルギー変換の機構解明に向けた光合成蛋白質の結晶構造 解析	名古屋大学・梅名泰史
2021N3005	自己組織化超分子の放射光X線回折による構造解析	東京大学・佐藤宗太
2021N4001	高圧下で合成された微小試料の常圧および高圧その場回折測定: 希ガス化合物の超高圧合成	名古屋大学・丹羽健
2021N4002	ゲルに包埋されたタンパク質結晶の構造解析	学習院大学・友池史明
2021N4003	高圧下で合成された微小試料の常圧および高圧その場回折測定: Ta-N系試料の熱膨張挙動の調査	名古屋大学・丹羽健
2021N4004	高圧下で合成された微小試料の常圧および高圧その場回折測定: 超高圧下における遷移金属炭窒化物の合成の試み	名古屋大学・丹羽健
2021N4005	金属有機構造体結晶の構造解析	名古屋大学・張中岳
2021N4006	高圧力下における水素結合性結晶の構造変化-氷 VII 相とガス ハイドレートーその5	岐阜大学・佐々木重雄
2021N5001	基質同一部位多段階酸化型シトクロム P450 酵素 RosC の結晶構 造解析	東邦大学・鈴木浩典
2021N5002	高圧下で合成された微小試料の常圧および高圧その場回折測定: 新規W-Sn系化合物の超高圧合成の試み	名古屋大学・丹羽健

2021N5004	ゲルで保護されたタンパク質結晶の検証	学習院大学・友池史明
2021N5006	高圧下で合成された微小試料の常圧および高圧その場回折測定:	夕十 尼 十学, 国际团
	新規 Fe-Si 系化合物の超高圧合成の試み	石百座八子・万羽健
2021N5007	高圧力下における水素結合性結晶の構造変化-氷 VII 相とガス	岐阜大学・佐々木重雄
	ハイドレートーその6	
2021N6001	高圧下で合成された微小試料の常圧および高圧その場回折測定:	女士民士举, 国动体
	超高圧下における Kr-N2系化合物の合成	石百座八子・刀羽硬
2021N6003	加圧による結晶性向上と高エネルギー構造の捕捉	名古屋大学・永江峰幸

BL5S1 (硬X線XAFSI)

※は公開延期の申請があったもの

実験番号	実 験 名	所属・実施責任者
202102003	Co 触媒からの単層カーボンナノチューブ成長過程のその場 XAFS 測定	名城大学・丸山隆浩
202102019	酸化グラフェンをテンプレートとした酸化ガリウム光触媒作製 の試み	名古屋大学・吉田朋子
202102040	MOF-on-MOF型 Chemiresistor の積層薄膜構造の解明	京都大学・大竹研一
202102047	焼成雰囲気を変えて焼成した青磁釉の釉色調、鉄価数及び釉構造の関係調査	茨城大学【愛知県実地研修】
202102055	複合酸化物触媒の XAFS 測定	名古屋大学・邨次智
202102061	高圧下で合成されたバナジウム窒化物のマイクロ XAFS 測定	名古屋大学・丹羽健
202102081 ※	銅鉱石中の砒素と銅の化学種分析	岐阜大学・勝田長貴
202102095	固体電解質材料のX線吸収分光	(公財)科学技術交流財団・岡島敏浩
202102101	炭酸カルシウムのX線吸収分光	(公財)科学技術交流財団・岡島敏浩
2021D2001	Ir ならびに Mn を含む酸化物における価数と金属一酸素間の距離の決定	北見工業大学・平井慈人
2021D2007	燃料電池カソード用の熱処理型 Fe 触媒の XAFS による構造解 析	熊本大学・大山順也
2021D2026	局所~長距離構造制御に立脚したイオン交換吸着における親和 性の起源解明	信州大学・簾智仁
2021D2045	局所~長距離構造制御に立脚したイオン交換吸着における親和 性の起源解明	信州大学・簾智仁
202103019	金属担持触媒の XAFS 測定	株式会社三五【愛知県実地研修】
202103025	2021 年度 XAFS 夏の学校測定実習①	名古屋大学・小川智史
202103034	【重点M3】湿式/イスループットプロセスによる多元系酸化物機能材の探索	東京理科大学・藤本憲次郎
202103056	Pt 原子触媒の局所構造解析	名古屋大学・織田晃
202103060	定量精度向上を目指したXAFS測定時のLCF解析手法の高度化 (1)	あいち産業科学技術総合センター・野本豊和
202103066	チタニア系可視光応答光触媒のエタノール水溶液中での光触媒 反応中における CuO の挙動解析	(地独)東京都立産業技術研究センター・染川 正一
202103071	ガス暴露時における酸化物半導体ガスセンサの価数変化	東京理科大学・藤本憲次郎
202103074	シンクロトロン光を用いた釉薬の外観変化の調査	あいち産業科学技術総合センター・村井崇章
202103083	有害元素除去に用いる Fe-Mg 系新規マテリアルの物性把握	早稲田大学・所千晴

0001D0000	酸素電極材料用酸化マンガンの解析	(地独)東京都立産業技術研究センター・染川
2021D3023		正一
202104001		五. 川工業十裕,未存知
2021D5024	1数化初プノ和子のEu 同りの構造計価	九州工業八子・本塚省
202104002	Zn 含有ポリマーにおける Zn の化学状態評価	愛知工業大学・福森健三
202104003	酸化グラフェンをテンプレートとした酸化ガリウム光触媒作製 の試み	名古屋大学・吉田朋子
202104005	マンガン希土類窒化物の化学状態調査	北海道大学・三浦章
202104007	ガス暴露時における酸化物半導体ガスセンサの価数変化	東京理科大学・藤本憲次郎
202104017	【重点M3】湿式ハイスループットプロセスによる多元系酸化物機能材の探索	東京理科大学・藤本憲次郎
202104023	鉱物に含まれる鉄とリンの化学形態	東京農工大学・橋本洋平
202104025	XAFS 法によるシリカ粒子内に取り込まれた TiO2の構造解析	(一財)総合科学研究機構・阿久津和宏
202104027	有機質資材の施用による湛水土壌ヒ素形態の変化	(国研)農業・食品産業技術総合研究機構・須 田碧海
202104054	シンクロトロン光を用いた釉薬の外観変化の調査	あいち産業科学技術総合センター・村井崇章
202104055	[実地研修]釉薬表面薄膜の剥離要因の調査	あいち産業科学技術総合センター・村井崇章
202104056	炭酸カルシウムのX線吸収分光(2)	(公財)科学技術交流財団・岡島敏浩
202104130	環境試料のセレン、ヒ素とマンガンの化学種分析	岐阜大学・勝田長貴
2021D4004	Br 含有医薬品原薬結晶多形の XAFS 測定	東邦大学・鈴木浩典
202105005	エポキシ塗料へのセシウム及びヨウ素の浸透挙動	東京都市大学・松浦治明
202105008	卑金属ナノ粒子あるいは酸化物の表面に固定された貴金属単原 子サイトの局所構造解析	名古屋大学・織田晃
202105019	【重点M3】湿式ハイスループットプロセスによる多元系酸化物機能材の探索	東京理科大学・藤本憲次郎
202105021	ガス暴露時における酸化物半導体ガスセンサの価数変化	東京理科大学・藤本憲次郎
202105043	全固体電池用塩化物電極中の鉄の状態解析	名古屋工業大学・谷端直人
202105056	局所~長距離構造制御に立脚したイオン交換吸着における親和 性の起源解明	信州大学・簾智仁
202105060	Sr と Ba の水溶液中および沈殿・樹脂中での化学構造	大阪大学・笠松良崇
202105162	水酸化ニッケルナノシート複合体の構造解析	名古屋工業大学・川崎晋司
2021D5002	XAFS によるカーボン担持 Fe 錯体触媒の構造解析	熊本大学・大山順也
2021D5032	局所~長距離構造制御に立脚したイオン交換吸着における親和 性の起源解明	信州大学・簾智仁
202106003	ルチル TiO2 表面上で創り出される貴金属原子触媒の局所構造解 析	名古屋大学・織田晃
202106010	金属酸化物触媒中の活性種構造解析	名古屋大学・吉田朋子
202106017	湖沼試料のセレン、ヒ素とマンガンの化学種分析	岐阜大学・勝田長貴
202106030	光触媒による六価クロムの還元反応と生成物の調査	(地独)東京都立産業技術研究センター・柳田 さやか
202106038	水田土壤中ヒ素の化学形態に対する資材施用効果の持続性	(国研)農業・食品産業技術総合研究機構・山 口紀子
202106042	定量精度向上を目指したXAFS測定時のLCF解析手法の高度化	あいち産業科学技術総合センター・野本豊和

	(2)	
202106042	Peroxymonosulfate を活性化し1 重項酸素を高収率で生成する	名古屋大学・田渕雅寺
202100040	窒化炭素上高担持鉄単原子触媒における鉄の局所構造解析	
202100052	石炭・石炭灰(フライアッシュ・クリンカ灰)に含まれる微量重	東古初末十学, 松浦沿田
202106058	元素の化学形態分析	朱永甸山八子· 忆曲伯切
202106059	青色レーザによる銅ナノ粒子低温焼結体の XAFS 分析	大阪大学・安田清和
202106067	亜鉛電解液の局所構造解析	東京大学・西村真一
202106109	有害元素除去に用いる Fe Mn 系新規マテリアルの物性把握	早稲田大学・所千晴
2021D6027	酸化被膜の状態解析	(国研)日本原子力研究開発機構・中原将海
2021D6036	局所~長距離構造制御に立脚したイオン交換吸着における親和	(今月) 十学, 签知仁
	性の起源解明	同/11八子・康白

BL5S2 (粉末 X 線回折)

※は公開延期の申請があったもの

実験番号	実 験 名	所属・実施責任者
2021L1002	短距離秩序を持つ量体化クラスターの平均構造研究III	名古屋大学・片山尚幸
202102021	蓄電固体材料の粉末X線回折測定	名古屋大学・石垣範和
202102054	高圧下で合成された微量試料の放射光粉末 X 線回折測定:チム	
202102034	ニー・ラダー相CrGeyにおける組成の合成圧力依存性	
202102074	低アルカリ性セメントにおける混和材最適化の探索 I (重点 M3)	名古屋大学・田渕雅夫
202102085	柔軟性ナノポーラス金属錯体の in situ ガス吸着・構造解析	名古屋大学・日下心平
202102102 💥	湿式合成を利用した FeNi ナノ粒子の構造評価	(国研)産業技術総合研究所・松本章宏
202102105	全自動構造解析のためのテスト実験2(重点M3)	大阪大学・小野寛太
202102107	低アルカリ性セメントにおける混和材最適化の探索II(重点M3)	名古屋大学・田渕雅夫
202102108	水吸着に伴う酸化グラフェン層間距離の変化	信州大学・大塚隼人
2021D2008 💥	フッ化鉄正極材料の構造解析2	京都大学・松本一彦
9091D9097	局所~長距離構造制御に立脚したイオン交換吸着における親和	信山
2021D2027	性の起源解明	信州大子・廉智 _
2021L2002	短距離秩序を持つ量体化クラスターの平均構造研究Ⅲ	名古屋大学・片山尚幸
202103024	蓄電固体材料の粉末X線回折測定	名古屋大学・石垣範和
909109099	【重点M3】湿式ハイスループットプロセスによる多元系酸化物	声言理利十学,薛大字 》的
202103033	機能材の探索	
202102052	高圧下で合成された微量試料の放射光粉末 X 線回折測定 : 高圧	冬士屋大学・佐々木拓出
202103032	相アルミン酸カルシウムの相分離	
202103069	ハイドロクロミズムを示す多孔質分子結晶の構造解析	筑波大学・山岸洋
202103089	硫化銀の粉末に対するX線回折パターンの解析	豊田工業大学・竹内恒博
202103092	スピネル酸化物の昇温過程での構造変化追跡	東北大学・小林弘明
202103093	全自動構造解析のためのテスト実験3 (重点M3)	大阪大学・小野寛太
202103094	低アルカリ性セメントにおける混和材最適化の探索(重点M3)	名古屋大学・田渕雅夫
2021D3011	局所~長距離構造制御に立脚したイオン交換吸着における親和	信州 大学 • 簽知仁
	性の起源解明	
2021D3031	Ga ₂ O ₃ およびドープGa ₂ O ₃ の精密構造解析	岐阜大学・大矢豊
2021D3036	Investigation of Cooperative Metal Sites within Metal-Organic Framework	(国研)産業技術総合研究所・山田理

2021L3002	短距離秩序を持つ量体化クラスターの平均構造研究Ⅲ	名古屋大学・片山尚幸
202104018	【重点M3】湿式/イスループットプロセスによる多元系酸化物	事言理到十学,薛木害 》的
	機能材の探索	来永连村八子·滕平愿八叫
202104061	【シンクロトロン光計測入門講習会】測定・解析実習 BL5S2	あいち産業科学技術総合センター・野本豊和
202104075	蓄電固体材料の粉末X線回折測定	名古屋大学・石垣範和
202104109	熱プラズマ法による Nd-Fe 合金ナノ粉末の合成	(国研)産業技術総合研究所・平山悠介
202104111	量体化物質の放射光 X線構造解析	名古屋大学・片山尚幸
202104114	全自動構造解析のためのテスト実験3 (重点M3)	大阪大学・小野寛太
202104115	高圧下で合成された微量試料の放射光粉末 X 線回折測定 : チム	夕士昆士学· <i>住 4</i> 本红山
202104115	ニー・ラダー相 CrGe y への元素置換	AUEXFILANGE
2021D4022	リチウム鉄酸化物のドーピングによる結晶構造変化追跡	東北大学・小林弘明
2021D4023	局所~長距離構造制御に立脚したイオン交換吸着における親和	信州大学・羅知仁
2021D4025	性の起源解明	
202105018	【重点M3】湿式ハイスループットプロセスによる多元系酸化物	車京理科大学・藤木霊次郎
202105010	機能材の探索	
202105057	局所~長距離構造制御に立脚したイオン交換吸着における親和	信州大学・簾智仁
202100001	性の起源解明	
202105062	金属多価ホスホネートMOFの結晶構造解明	東京農工大学・前田和之
202105089	アルミナ中に含まれる副成分の同定【実地研修】	あいち産業科学技術総合センター・杉山信之
202105094	瀬戸近郊の木節粘土の結晶性と可塑性試験	あいち産業科学技術総合センター・村井崇章
202105108	低アルカリ性セメントにおける混和材最適化の探索(重点M3)	名古屋大学・田渕雅夫
202105110	Sm-Fe-N永久磁石粉末のX線回折	名古屋大学・水口将輝
202105132	X線回折法による多価カチオンドープ Nal の結晶構造解析	名古屋工業大学・宮崎怜雄奈
202105150	高圧下で合成された微量試料の放射光粉末 X 線回折測定: 六方	名古屋大学・丹羽健
	晶 Cr5Ge3 の高圧合成と結晶構造	
202105155	蓄電固体材料の粉末X線回折測定	名古屋大学・石垣範和
202105159	湿式合成により作製した FeNi ナノ粒子の構造評価	(国研)産業技術総合研究所・松本章宏
202105160	Li 酸素電池放電生成物のX線回折測定	大阪大学・長谷陽子
202105170	高温で短距離秩序が現れる量体化物質の放射光X線構造解析	名古屋大学・片山尚幸
202106026	[実地研修] マイカパウダー中の結晶性シリカの評価	あいち産業科学技術総合センター・村井崇章
202106066	回折法による量体化物質の局所構造解析	名古屋大学・片山尚幸
202106085	水吸着に伴う酸化グラフェン層間距離の変化	信州大学・大家隼人
202106099	TeO ₂ -Ag ₂ O-Bi ₂ O ₃ テルタイトガラスの構造モデリング	名古屋工業大学・早川知克
202106137	X 線回折測定による重元素置換したホイスラー化合物の精密構	タ古屋工業大学・宮崎季俊
202106137	造解析	
202106144	Li 酸素電池放電生成物のX線回折測定	大阪大学・長谷陽子
202106147	高圧下で合成された微量試料の放射光粉末X線回折測定	名古屋大学・佐々木拓也
202106168	多孔性金属錯体の光反応における構造変化の解明	名古屋大学・日下心平
000100170	銅系光軸媒用材料の分析	(地独)東京都立産業技術研究センター・染川
		正一
2021D6025	リン酸鉄リチウム酸化物材料の結晶構造解	東北大学・小林弘明
2021D6029	局所~長距離構造制御に立脚したイオン交換吸着における親和	信州大学・審智仁
2021D6029	性の起源解明	

2021D6037	硫酸鉄ナトリウムの結晶構造解析	東京大学・西村真一
-----------	-----------------	-----------

BL6N1 (軟X線XAFS・光電子分光 I)

実験番号	実 験 名	所属・実施責任者
202101026	硫黄含有材料のXAFS 分析 1	名古屋大学・八木伸也
2021L1001	Cl,SまたはP含有医薬品原薬結晶多形のXAFS測定	東邦大学・鈴木浩典
202102010	土壌のリンの分光分析	東京農工大学・橋本洋平
202102013	全固体電池における黒鉛負極/固体電解質界面の電子状態解析	京都大学・山本健太郎
202102017	硫黄含有材料の XAFS 分析 2	名古屋大学・八木伸也
202102018	ガス分子吸着特性に関わる銀ナノ粒子の化学状態	名古屋大学・吉田朋子
202102023	S-K 吸収端 XAFS による琵琶湖底質の季節調査	関西医科大学・竹本邦子
202102024	腐植物質とその類縁化合物の生成と消失における構造解明	名古屋大学・片山新太
202102036	X 線吸収微細構造法によるナノシリコンの局所構造解析	名古屋工業大学・宮崎秀俊
202102039	無機固体表面上に創出される原子状活性点の状態解析	名古屋大学・織田晃
202102041	・アルミニウム電池材料の軟X線吸収分光解析	立命館立命館大学・折笠有基
2021D2047		女子昆士学, 于四月在
202102050	AISIO/GaN(0001)構造の化子構造分析	石百座入子・入田光生
202102088	無機リン酸酸塩中に担付させた動化子状態の分析	晶士クミガル株式会社【愛知県美地所修】 (同び)曲要 金月支要性後級公グでな機構 1
202103006	有機物含有量の高い土壌におけるリンの形態分析	(国研)展来・食品生果技術総合研先機構・山口紀子
202103008	硫黄含有材料の XAFS 分析 3	名古屋大学・八木伸也
202103013	S-K吸収端 XAFS による琵琶湖の夏季に採取した底質の分析	関西医科大学・竹本邦子
202103015	X 線吸収分光によるリチウム硫黄電池用正極のイオン伝導パス 形成および新規蓄電メカニズムの解明	関西大学・計賢
202103022	愛知県の水田土壌におけるリンの化学形態	愛知県農業総合試験場・安藤薫
202103054	アルミニウム電池材料の軟X線吸収分光解析	立命館大学・折笠有基
202103090	鉱物に含まれるリンの化学形態	東京農工大学・橋本洋平
202103104	X 線吸収微細構造法によるアルカリヨウ化物中のヨウ素の酸化 状態の解析	名古屋工業大学・宮崎秀俊
2021L3001	Cl,SまたはP含有医薬品原薬結晶多形のXAFS測定	東邦大学・鈴木浩典
202104004	ガス分子吸着特性に関わる銀ナノ粒子の化学状態	名古屋大学・吉田朋子
202104014	全固体電池における黒鉛負極/固体電解質界面の電子状態解析2	京都大学・山本健太郎
202104024	鉱物に含まれる鉄とリンの化学形態	東京農工大学・橋本洋平
202104028	LiePS5Clの溶解再析出によるPの化学状態解析	北海道大学・三浦章
202104040	硫黄含有材料のXAFS分析4	名古屋大学・八木伸也
202104042	腐植物質とその類縁モデル化合物の構造解明	名古屋大学・片山新太
202105013	腐植物質とその類縁モデル化合物の構造解明	名古屋大学・片山新太
202105040	Si-KXAFS 測定による時効に伴う低炭素鋼中固溶 Siの化学状態 変化の追跡	九州大学・西堀麻衣子
202105048	ハライド塩の処理に関する検討(5)	(国研)日本原子力研究開発機構・高畠容子
202105049	溶融塩蒸留試験にて得られた物質における Clの形態	(国研)日本原子力研究開発機構・渡部創
202105055	BaO-SiO ₂ 結晶化ガラスへの Li ₂ O 添加がネットワーク構造に与 える影響の解明	九州大学・波多聰

2021D5027	ステンレス鋼上に析出したシリカの化学状態解析 (Si K 吸収端	夕十昆十兴, 宜滨港十朗
	XANES)	石口座八子・同頃球へ防
2021L5002	アルミニウム電池材料の軟X線吸収分光解析3	立命館大学・折笠有基
2021L5005	Cl,SまたはI含有医薬品原薬結晶多形のXAFS測定	東邦大学・鈴木浩典
202106011	ガス分子吸着特性に関わる銀ナノ粒子の化学状態	名古屋大学・吉田朋子
202106021	愛知県の水田土壌におけるリンの化学形態	愛知県農業総合試験場・安藤薫
202106034	TEM 試料軟X線計測導入装置のテスト実験2(重点M3)	名古屋大学・田渕雅夫
202106044	樹脂表面に直接固定化された金属ナノ粒子の化学状態の解析	大阪大学・清野智史
202106046	水と硫化物固体電解質の反応機構解析	京都大学・山本健太郎
	Peroxymonosulfate を活性化し1 重項酸素を高収率で生成する	
202106050	窒化炭素上高担持鉄単原子触媒における添加硫黄の局所構造解	名古屋大学・田渕雅夫
	析	
202106064	S-K 吸収端 XAFS による琵琶湖の流入河川で採取した底質の分	即西医科士学,放大却了
	析	英四医科八子······拉布丁
202106069	ハライド塩の処理に関する検討(6)	(国研)日本原子力研究開発機構・高畠容子
202106076	鉱物に含まれるリンの化学形態	東京農工大学・橋本洋平
2021L6002	アルミニウム電池材料の軟X線吸収分光解析3	立命館大学・折笠有基
2021L6005	Cl,SまたはI含有医薬品原薬結晶多形のXAFS測定	東邦大学・鈴木浩典

BL7U (真空紫外分光)

実験番号	実 験 名	所属・実施責任者
2021L4001	軸配位型フタロシアニン分子系伝導体 TPP[(FePc)(CN)2]2 単結 晶の角度分解光電子分光	名古屋大学・伊藤孝寛
2021L4004	二次元格子物質の創製と電子構造に関する研究	名古屋大学・柚原淳司
202104026	エピタキシャルグラフェンの界面制御と電子状態	名古屋大学・乗松航
202105044	カーボン層被覆した窒化ホウ素ナノチューブにおける化学結合 状態の解析	大阪大学・小林慶裕
202105068	エピタキシャルグラフェンの界面制御と電子状態	名古屋大学・乗松航
202105120	薄膜フォトカソード用メッシュグラフェン基板の加熱洗浄温度 依存性の評価	名古屋大学・郭磊
202105142	Al/Si(111)上に表面偏析した極薄 Si 層の光電子分光分析	名古屋大学・大田晃生
202105143	Nb ドープ酸化チタン薄膜の光電子回折計測	静岡大学・下村勝
202105165	全固体電池電解質の組成評価	名古屋市工業研究所・宮田康史
2021L5001	軸配位型フタロシアニン分子系伝導体 TPP[(FePc)(CN)2]2 単結 晶の角度分解光電子分光	名古屋大学・伊藤孝寛
2021L5004	二次元格子物質の創製と電子構造に関する研究	名古屋大学・柚原淳司
202106015	層状 MAX 相化合物 Zr ₃ SnC ₂ の角度分解光電子分光	名古屋大学・伊藤孝寛
202106063	エピタキシャルグラフェンの界面制御と電子状態	名古屋大学・乗松航
202106091	二次元格子物質の創製と電子構造に関する研究	名古屋大学・柚原淳司
202106116	高温超伝導候補物質イリジウム酸化物の XAFS 測定	岡山大学・堀江理恵
202106180	チタニア系光触媒用材料の分析	(地独)東京都立産業技術研究センター・染川 正一
202106184	腐植物質とその類縁モデル化合物の構造解明	名古屋大学・片山新太

2021L6001	軸配位型フタロシアニン分子系伝導体 TPP[(FePc)(CN)2]2 単結	女士昆士学,伊藤老帝
	晶の角度分解光電子分光	石百座八子・伊藤子見

BL8S1 (薄膜 X 線回折)

実験番号	実 験 名	所属・実施責任者
202102053	高分子境界膜のX線反射率計測	名古屋大学・伊藤伸太郎
000100000	AZ31 マグネシウム合金 A6005C アルミニウム合金爆着接合体	夕 十层工業十学,出田麻土
202102068	の接合界面における残留応力評価	石古座工業八子・成田林木
202102082	X線・中性子反射率法によるシリカ薄膜の相補的構造解析	(一財)総合科学研究機構・阿久津和宏
2021L2003	二酸化炭素中でのガス分離用高分子薄膜の構造評価	九州大学・高原淳
202103023	愛知県の水田土壌におけるリンの化学形態	愛知県農業総合試験場・安藤薫
202103062	高分子境界膜のX線反射率計測	名古屋大学・伊藤伸太郎
202103068	熱酸化ハフニウムの結晶構造評価	名古屋大学・大田晃生
202103082	マグネシウム合金/アルミニウム合金爆発圧着材の残留応力に及 ぼす温間圧延の影響調査	名古屋工業大学・成田麻未
202104062	【シンクロトロン光計測入門講習会】測定・解析実習 BL8S1	あいち産業科学技術総合センター・野本豊和
202104076	蓄電固体材料の薄膜X線回折測定	名古屋大学・石垣範和
202104110	高分子境界膜のX線反射率計測	名古屋大学・伊藤伸太郎
202104116	金属材料の表面窒化物層の解析	あいち産業科学技術総合センター・加藤正樹
202104121	窒化サンプルの化合物層の評価 【実地研修】	あいち産業科学技術総合センター・野本豊和
202104122	熱プラズマ法による Nd-Fe 合金ナノ粉末の合成	(国研)産業技術総合研究所・平山悠介
202104128	マグネシウム合金/アルミニウム合金爆発圧着材における残留応	名古屋工業大学・成田麻未
202104120	力の測定方向依存性調査	
202105115	X線反射率法によるシリカハイブリッド膜の構造解析	(一財)総合科学研究機構・阿久津和宏
202105134	バイオマスを利用した固形燃料の XRD 分析	あいち産業科学技術総合センター・野本豊和
202105176	金属ナノ粒子の構造解析	(国研)産業技術総合研究所・平山悠介
202105178	全固体電池電解質の組成評価	名古屋市工業研究所・宮田康史
202105180	グラフェン包接ゼオライト膜の構造	信州大学・大塚隼人
202105181	X 線回折による非貴金属系担持型アンモニア合成触媒の構造解	冬士屋大学・永岡勝俊
202103101	明(II)	
202106024	ソフト化学手法により作製した酸化物超薄膜の構造観察	東京理科大学・藤本憲次郎
202106152	高分子境界膜のX線反射率計測	名古屋大学・伊藤伸太郎
000100170	マグネシウム合金/アルミニウム合金爆発圧着材における残留応	タ十屋工業十学・武田府丰
202100170	力の測定方向依存性調査	
202106185	白色 LED 応用を目的とした新規酸化物および酸窒化物蛍光体の	加計学園岡山理科大学・佐藤泰中
202100100	結晶構造解析	
202106191	[実地研修]セラミック表面の結晶状態の調査	あいち産業科学技術総合センター・村井崇章

BL8S2 (X線トポグラフィ・X線CT:愛知県)

実験番号	実 験 名	所属・実施責任者
2021a0001	高分解能 X 線 CT によるアトマイズ金属粉末の内部気孔観察と その低減化技術開発	名古屋大学・櫻井郁也
2021a0003	キラー欠陥自動検査システム構築に向けたパワーデバイス半導	名古屋大学・原田俊太

	体結晶のX線トポグラフィ法による欠陥評価	
2021a0004	アモノサーマル・HVPE 基板 GaN 結晶の欠陥評価	名古屋大学・原田俊太
2021a0010	触媒内細孔の観察	名古屋大学・山田博史
2021a0011	BL8S2 における CFRTP のX線 CT 測定について7	あいち産業科学技術総合センター・吉田陽子
2021a0012	放射光トポグラフィによる GaN 結晶の評価	名古屋大学・兼近将一
2021a0013	キラー欠陥自動検査システム構築に向けたパワーデバイス半導体結晶のX線トポグラフィ法による欠陥評価2	名古屋大学・原田俊太
2021a0014	GaN 基板のX線トポ観察実験	名古屋大学・田中敦之
2021a0016	模擬電池内部のリチウム金属の観察	株式会社 SOKEN・鈴木健了 【重点プロジェ クト】
2021a0017	LIGA プロセスを用いた小惑星探査機はやぶさ試料分析用銅製 試料台の作成	名古屋大学・櫻井郁也
2021a0018	AichiSR BL8S2 ビームラインへのX線暗視野 CT 装置によるサ ンプル撮像実験2	名古屋大学・砂口尚輝
2021a0019	AichiSR BL8S2 ビームラインへのX線暗視野 CT 装置によるサ ンプル撮像実験3	名古屋大学・砂口尚輝
2021a0021	X線CTによる樹脂複合材料内部の観察	名古屋大学・松本昌樹
2021a0025	リチウムイオン電池充放電状態の2次元 XAFS 観察3(重点I 2)	名古屋大学・渡部孝
2021a0026	XAFS-X線CT法による医薬品錠剤の構造解析	東邦大学・野口修治
2021a0031	GaN 基板のX線トポ観察実験	名古屋大学・田中敦之
2021a0032	高分解能 X 線 CT によるアトマイズ金属粉末の内部気孔観察と その低減化技術開発	名古屋大学・櫻井郁也
2021a0034	CNT シリカ多孔体断熱材の三次元構造観察	名古屋大学・上野智永
2021a0035	CFRP 射出成形品の内部構造の観察	あいち産業科学技術総合センター・吉田陽子
2021a0036	原子核乾板によるX線画像撮影条件の検討	名古屋大学・原田俊太
2021a0037	AichiSR BL8S2 ビームラインに構築したX線暗視野法に基づく 屈折コントラスト CT による酒米の撮影	名古屋大学・砂口尚輝
2021a0040	X線CTによるコンクリート内部の組織観察	金城学院大学・朴相俊
2021a0041	Y系溶射膜の内部空隙観察	宮城県産業技術総合センター・内海宏和
2021a0045	リチウムイオン電池充放電状態の2次元 XAFS 観察4(重点 I 2)	名古屋大学・渡部孝
2021a0046	革新的シンクロトロン光CT技術による次世代モノづくり産業創成 [M4]	名古屋大学・砂口尚輝
2021a0047	触媒内細孔の観察	名古屋大学・山田博史
2021a0048	パウダーファンデーション成型体の内部構造観察 [M4]	日本メナード化粧品株式会社・浅野浩志【重 点プロジェクト】
2021a0049	革新的シンクロトロン光CT技術による次世代モノづくり産業創成 [M4]	名古屋大学・砂口尚輝
2021a0051	革新的シンクロトロン光CT技術による次世代モノづくり産業創 成 [M4]	名古屋大学・砂口尚輝
2021a0052	革新的シンクロトロン光CT技術による次世代モノづくり産業創成 [M4]	名古屋大学・砂口尚輝

2021a0053	原子核乾板によるX線画像撮影条件の検討Ⅱ	名古屋大学・原田俊太
2021a0054	革新的シンクロトロン光CT技術による次世代モノづくり産業創成	名古屋大学・櫻井郁也
2021a0062	ペンデル干渉による単結晶評価	名古屋大学・北口雅暁
2021a0065	X線CT 測定	名古屋大学・松本昌樹
2021a0066	BL8S2 における CFRTP のX線CT 測定について9	あいち産業科学技術総合センター・吉田陽子
2021a0068	触媒内細孔の観察	名古屋大学・山田博史
2021a0070	食品原料の加工による構造変化に関する観察・解析	宮城県産業技術総合センター・羽生幸弘
2021a0074	LIGA プロセスによる超微細構造体作製技術の開発	名古屋大学・櫻井郁也
2021a0075	高分解能 X 線 CT によるアトマイズ金属粉末の内部気孔観察と その低減化技術開発	名古屋大学・櫻井郁也
2021a0077	X線CT 測定	名古屋大学・松本昌樹
2021a0081	ダイヤモンドの転位および歪み測定	名古屋大学・田渕雅夫
2021a0082	LIGA プロセスによる超微細構造体作製技術の開発	名古屋大学・櫻井郁也

BL8S3 (広角・小角 X 線散乱)

※は公開延期の申請があったもの

実験番号	実 験 名	所属・実施責任者	
202102037	小角散乱法による分散微粒子の構造解析	名古屋工業大学・山本勝宏	
202102059	モモ果実の軟化に関与する Expansinの成熟過程における細胞壁	近畿大学・石丸恵	
	構造変化の直接観察		
202102104	高分子境界膜のX線反射率計測	名古屋大学・伊藤伸太郎	
2021D2041	疎水性相互作用を有するデュアルネットワークゲルの構造解析	北海道大学・中島祐	
909109019	Microstructure study of carbon nanotubes nanocomposites	信州大学,你内健司	
202103018	with aromatic polyamides		
202103061	ATP 加水分解過程でのミオシンの構造ダイナミクス	名古屋大学・杉本泰伸	
202103077	繰り返し伸長下における環動ゲルの伸長誘起結晶化観察	東京大学・眞弓皓一	
202103084	ジルコニウム酸化物固相の溶解機構の解明のための表面分析	京都大学・小林大志	
202103091 💥	シリカ含有ポリマーの相構造調査	名古屋工業大学・林幹大	
202103096	アルミニウム合金の X 線小角散乱	(公財)科学技術交流財団・岡島敏浩	
202103098	SAXS によるポリマーのメソスケール構造の測定と解析	金沢大学・瀧健太郎	
202104063	【シンクロトロン光計測入門講習会】測定・解析実習 BL8S3	あいち産業科学技術総合センター・野本豊和	
202104007	エレクトロスピニング法によって得られるナノファイバー膜の	タ十 尼十 学, 宣播 <u>停</u> 士郎	
202104097	構造解析	石口座八子・同個冊入印	
202104099	熱可塑性エラストマーのポリマーアロイ構造の分析	福井大学・山下義裕	
202104119	有機修飾金属酸化物ナノ粒子の溶液中での分散・凝集挙動追跡	東北大学・西堀麻衣子	
000104100	結晶性成分を含む三元共重合体エラストマーの高次構造と力学		
202104120	物性	磁員県立八子・竹下広樹	
202104124	広角X線による炊飯米および米粉の結晶化度の測定	宮城大学・庄子真樹	
202104127	Zn 含有ナノ粒子分散ポリマーブレンドの構造解析	愛知工業大学・福森健三	
000105005		(一財)ファインセラミックスセンター・松平	
202105087	小用 取 乱 に よ る R 1 a 3 U 9 の 構 道 弾 析	恒昭	
202105101	小角散乱法による溶媒分散微粒子の構造解析	名古屋工業大学・山本勝宏	
202105135	バイオマスを利用した固形燃料のX線小角散乱測定	あいち産業科学技術総合センター・野本豊和	

202105140	フルオロエラストマーとイオン液体からなるイオンゲルの構造	夕十 <u>民十</u> 兴,百扬 <u>俭</u> 十郎
202105149	解析	石口座八子・同惝囲へい
202105154	高分子潤滑油の小角X線散乱計測	名古屋大学・伊藤伸太郎
202105157	広角X線による豚筋肉細胞水溶性成分の結晶評価	宮城大学・須田義人
202105163	ガンマ線照射によるポリオレフィンの結晶ラメラ構造変化	滋賀県立大学・竹下宏樹
202105164	米の内部構造が食味に及ぼす影響の解明	愛知県農業総合試験場・谷俊男
202105167	Al 合金のX線小角散乱(2)	(公財)科学技術交流財団・岡島敏浩
202105175	木材の物性予測モデル構築に向けたミクロフィブリル傾角計測	京都大学・小林加代子
2021D5037	小角X線による豚筋肉細胞水溶性成分の結晶評価	宮城大学・須田義人
202106126	セルロースナノファイバーの凝集構造解析	宮城県産業技術総合センター・遠藤崇正
202106131	ブロック共重合体が形成する新規ミクロ相分離構造4	名古屋工業大学・山本勝宏
202106151	熱可塑性エラストマーのポリマーアロイ構造の分析	福井大学・山下義裕
202106153	高分子潤滑油の小角X線散乱計測	名古屋大学・伊藤伸太郎
202106163	ATP 加水分解過程でのミオシンの構造ダイナミクス	名古屋大学・杉本泰伸
202106170	有機修飾金属酸化物ナノ粒子コンポジットの凝集状態評価	東北大学・西堀麻衣子
202106171	有機修飾金属酸化物ナノ粒子の溶液中での分散・凝集挙動追跡	東北大学・西堀麻衣子
202106172	ベシクルのサイズ計測	東京大学・内山聖一
202106173	有機配位子共存下におけるジルコニウムコロイドの分析	京都大学・小林大志
202106181	Pt ナノ粒子の粒子径・粒子間距離の測定	株式会社アヤボ【愛知県実地研修】
202106186	鉄鋼材料のX線小角散乱	(公財)科学技術交流財団・岡島敏浩
000100100	トリブロック共重合体2様ブレンドから形成される準周期性、あ	
202100188	るいは近似結晶性ミクロ相分離構造の精密構造解析	石口庄八子・同町钗芯
202106189	SAXS によるポリマーのメソスケール構造の測定と解析	金沢大学·瀧健太郎

BL11S2 (硬X線XAFS II)

※は公開延期の申請があったもの

実験番号	実 験 名	所属・実施責任者
202102001	複合酸化物触媒の XAFS 測定	名古屋大学・邨次智
202102002	新規蛍光体材料における発光中心イオンの配位環境及び価数制	豊橋技術科学大学・中野裕美
	御と発光強度向上の取り組み	
202102007	新2連ミラーの試験利用(重点M3)	名古屋大学・田渕雅夫
202102022 💥	窒素分子からのアンモニア合成に有効な担持金属クラスター触	(国研)理化学研究所・トロ際
202102022 %	媒の XAFS による構造解析	(国际历史化于明元内,工口具
202102040	オープンメタルサイトをもつ MOF の XAFS スペクトルの蒸気	タ十 尼十 学 - 坂本が偽
202102049	導入王および結晶形態依存性の解明	石口座八子・奴平阳仮
202102060	環境触媒の XAFS 測定	名古屋大学・小澤正邦
202102078	ナノ粒子触媒の XAFS 測定	名古屋大学・小澤正邦
202103001	新2連ミラーの試験利用(重点M3)	名古屋大学・田渕雅夫
202102010	Fe 触媒からの単層カーボンナノチューブ成長過程のその場	夕卡十一一个,力山逐进
202103010	XAFS 測定	石城八子・九山陸市
202103026	2021 年度 XAFS 夏の学校測定実習②	名古屋大学・小川智史
202103047	蓄電材料の電子状態分析	東北大学・小林弘明
202103049	高レベル放射性廃棄体中の不溶解残渣(白金族合金)の構造解析	東京都市大学・松浦治明
202103050	NTA アミド系吸着材に吸着されたパラジウム元素の構造解析	東京都市大学・松浦治明

202103051	ナノ粒子触媒の XAFS 測定	名古屋大学・小澤正邦
202103072	Cu 系試料の XAFS スペクトル測定 【実地研修】	JX金属株式会社【愛知県実地研修】
909104011	ArO ₂ キャリアガスを用いたときの Co 触媒からの単層カーボン	夕卡十一一,九山陈泚
202104011	ナノチューブ成長過程のその場 XAFS 測定	石城八子・九山陸信
202104019	新2連ミラーの試験利用(重点M3)	名古屋大学・田渕雅夫
202104021	新規蛍光体材料における発光中心イオンの配位環境及び価数制	豊産技術科学士学・中野教美
202104021	御と発光強度向上の取り組み	豆间以阳和于八于「丁利阳天
202104048	重元素を用いた電池材料のXAFS解析	立命館大学・折笠有基
202104057	Mn 固溶 TiO_2 上に担持された RuO_x の局所構造解析	名古屋大学・織田晃
202104059	MOF-on-MOF 型複合多孔性材料の積層薄膜構造の解明	京都大学・大竹研一
202105003	NTA アミド系吸着材に吸着されたパラジウム元素の構造解析	東京都市大学・松浦治明
202105004	高レベル放射性廃棄体中の不溶解残渣(白金族合金)の構造解析	東京都市大学・松浦治明
202105006	酸化物固定化金属錯体の XAFS 測定	名古屋大学・邨次智
202105009	単原子触媒の局所構造解析	名古屋大学・織田晃
202105010	Ir 触媒からの単層カーボンナノチューブ成長過程のその場	冬城大学・丸山隆浩
202105010	XAFS 測定	
202105016	生理障害を発生したイチゴの葉の無機元素マッピング	宮城大学・菊地郁
202105052	複合型 MOF の吸着状態制御下での XAFS スペクトル計測	名古屋大学・坂本裕俊
202105059	Ce ₂ Pt ₆ X ₁₅ 系のX線吸収分光	(公財)科学技術交流財団・岡島敏浩
202106004	貴金属単原子含有卑金属酸化物表面触媒の局所構造解析	名古屋大学・織田晃
202106006	X線吸収分光によるアンモニア合成触媒の活性点構造解明(Ⅲ)	名古屋大学・永岡勝俊
202106007	イネ種子の無機分析	宮城大学・鳥羽大陽
202106008	担持金属クラスター触媒の XAFS による構造解析	(国研)理化学研究所・上口賢
202106019	酸化物固定化金属錯体・金属ナノ粒子の XAFS 測定	名古屋大学・邨次智
202106022	Ni-Au ナノ粒子の合金相における局所構造の EXAFS 解析	名古屋大学・小川智史
202106023	シンクロトロン光を用いた釉薬の外観変化の調査	あいち産業科学技術総合センター・村井崇章
202106065	バナジウム系量体化物質の局所構造解析	名古屋大学・片山尚幸
202106070	環状ネットワーク侵入型発光中心の価数評価	山形大学・北浦守
202106098	赤外反射率の高い黒色顔料の構造と電子状態分析	名古屋工業大学・早川知克
000100100	Li-Ta-Ti-OMn 蛍光体の MgO 添加による価数制御と発光特性向	曲扬比准利学士学,中国次学
202100103	上の取り組み	豆面エバリイナナハナ・十三パ份夫
202106107	酸化物蓄電材料の電子状態分析	東北大学・小林弘明
202106110	硫化態金属の濃度測定	早稲田大学・所千晴
2021D6007	NTA アミド吸着材及び溶媒の Pd 錯体構造解析	(国研)日本原子力研究開発機構・渡部創

6.2 成果公開無償利用事業成果報告

AichiSR の新たな利用の拡大に繋げることを目的とした、成果公開無償利用事業により、2021 年度に採択された課題は以下のとおり。

なお、成果報告書の内容は、AichiSR ホームページ で公開されている。 【掲載ページURL】

https://www.aichisr.jp/publication/report/2021/2.html

実験番号	実 験 課 題 名	実施企業等
2021P0101	冷間鍛造の潤滑皮膜形成プロセスにおけるウェットブラストによる素材前処理 の効果検証	マコー株式会社
2021P0103	軟 X 線 XAFS スペクトルからの物性予測	株式会社デンソー
2021P0104	ボーンチャイナ用結晶釉薬の発色・発現機構の解明とその安定化に向けた応用技術の開発	鳴海製陶株式会社
2021P0105	a-SiO ₂ /Si の GI-PDF(grazing-incidence Pair distribution functions)による局 所構造解析	株式会社 日産アーク
2021P0106	MA-VHP で in-situ 合成した FeAl 基 ODS 焼結体のシンクロトロン光によ る XRD 解析	豊臣熱処理工業株式会社
2021P0107	X線イメージングによる口腔内崩壊錠(OD錠)の導水過程および崩壊挙動観察	株式会社ダイセル
2021P0108	結晶構造解析によるプロスタグランジン D2 合成酵素阻害剤のスクリーニング	株式会社丸和栄養食品
2021D0100		学校法人東洋大学
2021P0109	単分子快山を可能とする多増クラフェンハイオセンサーの用発 ※	株式会社三和
2001D0110		東京理科大学
2021P0110	初本 Materials Genome ノロビスによる主面体电池用面体电件員の抹茶 ※	株式会社デンソー
2021P0112	絶縁性有機材料の NEXAFS 測定を可能にする金属・カーボン薄膜蒸着条件の 確立	JSR 株式会社
0001D0110		広島大学
2021P0113	XAFS を用いて FUND-SNU2 1 ノ 私士の城和地街垣明地下 ※	株式会社キャタラー
		東京工業大学
2021P0114	戦人禄 AAFS 並びに元电ナガ元伝による ALFS 化酸水焼果物の 川、砂塩田化体構成元素の電子状態解	日立GEニュークリア・エナジ
	リン酸塩回位性構成ル系の電子状態弾	一株式会社
2021P0115	全固体電池の XAFS 解析	株式会社 日産アーク
2021P0117	X線回折による超高精細スクリーン印刷用ステンレスメッシュの研究開発	アサダメッシュ株式会社
2021P0119	Tender-X線を用いた分光測定による高分子材料の深さ依存性評価法の確立	株式会社メニコン
2021P0120	蛍光 XAFS 測定における空間分解能の向上手法の開発	株式会社 SOKEN

7. 委員会

7 委員会

AichiSR では、外部の有識者がセンターの整備・運営についての調査審議を行う「運営委員会」をはじめ、 さまざまな委員会を開催している。

	開催日	2021年6月7日(月)
第1回	開催場所	オンライン開催
	議 題	2020 年度事業報告について
	開催日	2022年3月2日(水)
笛の同	開催場所	オンライン開催
舟⊿凹		2022 年度年間運営計画(案)について
	武 超	設備・機器の整備・高度化計画について

7.1 あいちシンクロトロン光センター運営委員会

7.2 あいちシンクロトロン光センター成果公開無償利用事業課題審査委員会

開催日:2021年5月13日 (木) 開催場所:あいちシンクロトロン光センター 2階 大会議室

7.3 その他委員会

- (1) 業務安全管理委員会毎月1回開催(10月、2月を除く)
- (2) 放射線安全管理委員会 2回(6月、3月) 開催

8. 安全管理

8 安全管理

8.1 放射線管理

(1) 管理体制

AichiSRにおいて装置等の取扱いに従事する者及び安全管理に従事する者に関する組織図は以下のと おり。

あいちシンクロトロン光センター放射線障害予防規程(2020.9)抜粋

(2) 従事者登録

2021 年度 AichiSR 放射線業務従事者登録数 694 名

(3) 職員用放射線業務従事者教育訓練講習会

職員用の講習会を次の日程で開催した。(いずれも再教育) 11月29日(月)13:30~15:00 参加者: (会場)8名、(オンライン)13名 12月20日(月)13:30~15:00 参加者: (会場)4名、(オンライン)6名

8.2 その他

ユーザーが持ち込む試料や化学薬品等について、法令や所則に基づき、安全審査を実施している。セ ンターの運営に必要な資格で、職員が保有している主なものは以下のとおり。

- · 放射線取扱主任者
- · 有機溶剤作業主任者

・玉掛け

- ・高圧ガス取扱主任者
- ・特定化学物質及び四アルキル鉛等作業主任者
 ・危険物取扱者
- ・床上繰作式クレーン

9. 施設管理

9 施設管理

9.1 電気

AichiSR の電気は、2021 年 4 月から 12 月まで株式会社ホープ、2022 年 1 月から 3 月まで中部電力株式 会社から知の拠点の受電設備を経由して供給された。6,600V で受電した電気を、当センターで 420V、210V、105V に降圧して使用している。

2021年					
4月	5月	6月	7月	8月	9月
292,500	396,350	425,660	437,110	355,380	408,980
3,715,730	5,240,462	5,675,848	6,282,673	5,163,111	6,062,117

(上段)月別電気使用量(単位:kwh)/(下段)月別電気使用料金(単位:円)

			2022年			2021 年度
10 月	11 月	12 月	1月	2 月	3月	合計
357,520	404,930	418,950	437,100	395,130	410,390	4,740,000
5,194,742	6,011,127	6,398,706	8,497,839	8,399,902	9,072,361	75,714,618

9.2 水道

AichiSR では、瀬戸市から供給されている上水道水を、飲料水や加速器等の冷却水として使用している。

(上段)水道使用量(単位:m³)/(下段)水道使用料金(単位:円)

2021年 3~5月	5~7 月	7~9 月	9~11 月	11月~ 2022年1月	2022年 1~3月	2021 年度 合計
661	782	835	604	774	660	4,316
190,135	227,403	243,727	172,579	224,939	189,827	1,248,610

10. 運営

10 運営

10.1 過去5年間の予算・利用料収入の推移

(単位:千円)

	2017年度	2018 年度	2019年度	2020年度	2021 年度
予算額	585,793	507,851	519,566	595,614	561,849
利用料収入額(実績)	191,370	194,703	207,780	215,249	219,696

※予算額は、外部資金及び委託費を除く。

- 10.2 運営組織
- (1) 公益財団法人科学技術交流財団 組織図

(2) スタッフ名簿

(2022年3月末時点)

所 長	國枝	秀世	
副所長	澤田	篤	
副所長		岡島	敢 浩
主席研究員		渡辺	義 夫
管理課			
課長		山内	専雅
主事(事務	専門職員)	加藤	由紀
主事(事務	専門職員)	松原	告美
光源課			
主幹研究		高嶋	圭史
主任技術和	研究員	石田 💈	孝司
研究員		藤本	將 輝
研究員		郭	磊
SES		金木	公孝
SES		森里	邦彦
SES		鈴木 注	遥太
ビームライン	課		
課長		鈴木み	どり
担当課長美	兼主任技術研究員	吉村(倫拓
係長		恩田	康 佑
ビームラー	インスタッフ		
BL1N9	主任技術研究員	杉山	陽 栄
DEINZ	技術研究員	村瀬	青 紀
BL5S1	主任技術研究員	福 岡	修
DLUUT	SES	廣友 考	稔樹
BL5S2	主任技術研究員	中西	俗紀
	SES	佐久間:	青 博
BL6 N1	主任技術研究員	陰 地	宏
DL0 N1	主任技術研究員	柴田(生孝

	BL7U	主任技術研究員	仲武	昌史
		技術研究員	高倉	将一
	BL8S1	SES	山本倭	建一郎
		外来技術員	酒 井	久資
	BL8S2	技術研究員	花田	賢志
	BL8S3	技術研究員	神谷	和孝
		技術研究員	山元	博子
	BL8S3, BL11S2	SES	福永	正則
	DI 1100	SES	加藤	弘泰
	BLIIS2	技術研究員	須田	耕平
コ	ーザー支援	室		
	産業利用:	コーディネータ	野崎	彰子
	産業利用:	コーディネータ	永見	哲夫
	産業利用コーディネータ		惨 田	千恵
	座木竹川		мп	
	研究員	- / 11. /	Iesari	Fabio
	研究員 主事(事務	專門職員)	- 小山 Iesari 塚田	Fabio 幸
	産業利用 研究員 主事(事務 パートナー	-) / / /) 専門職員) −職員	家田 Iesari 塚田 中上	Fabio 幸 悦子
安	 研究員 主事(事務) パートナー 全管理課 	-) / / /) 専門職員) −職員	ッロ Iesari 塚田 中上	Fabio 幸 悦子
安	 研究員 主事(事務 パートナー 全管理課 副所長ほど 	 専門職員) −職員 か 16 名兼務 	ット Iesari 塚田 中上	Fabio 幸 悦子
安特	 研究員 主事(事務 パートナー 全管理課 副所長ほれ 別フェロー 	 専門職員) −職員 か 16 名兼務 - (名誉所長) 	ッロ Iesari 塚田 中上	Fabio 幸 悦子 美和
安特産	 研究員 主事(事務 パートナー 全管理課 副所長ほど 別フェロー 業利用アド 	 専門職員) −職員 か 16 名兼務 - (名誉所長) ジバイザー 	w 山 Iesari 塚 田 中上 竹田 田代	Fabio 幸 悦子 美和 孝二
安 特 産 産	 研究員 主事(事務 パートナー 全管理課 副所長ほれ ・別フェロー ・業利用アド ・業利用アド 	 専門職員) −職員 か 16 名兼務 - (名誉所長) ボバイザー ボバイザー 	w 山 Iesari 塚 田 中上 竹田 田代 太田	Fabio 幸 悦子 美和 孝二 公典
安 特 産 産 産	 研究員 主事(事務 パートナー 全管理課 副所長ほれ 別フェロー 業利用アド 業利用アド 業利用アド 	 専門職員) 一職員 つ職員 つ職員 つ 16 名兼務 - (名誉所長) ボバイザー ボバイザー ボバイザー 	w 山 Iesari 塚 田 中上 竹田 田代 太田 太田	Fabio 幸 悦子 美和 孝二 公典 俊明
安 特 産 産 産	 研究員 主事(事務 パートナー 全管理課 副所長ほれ ・別フェロー ・業利用アド ・業利用アド ・業利用アド 	 専門職員) 一職員 つ職員 つ職員 つ職員 ついても ついても ついても ついても かれ デバイザー デバイザー デバイザー デバイザー デバイザー 	w 山 Iesari 塚 田 中上 竹田 田代 太田 太田 砥綿	Fabio 幸 悦子 美二 女 後二 俊明 真一
安 特 産 産 産 産	 研究員 主事(事務 パートナー 全管理課 副所長ほれ 別フェロー 業利用アド 業利用アド 業利用アド 業利用アド 業利用アド 	 専門職員) 一職員 つ職員 つ職員 つ 16 名兼務 - (名誉所長) ボバイザー ボバイザー ボバイザー ボバイザー ボバイザー 	ッ Iesari 塚田 中上 竹田 田代 太田 太田 砥綿 東	Fabio 季 悦子 美子 女 女 <
安 特 産 産 産 産 光	 研究員 主事(事務 パートナー 全管理課 副所長ほれ 別フェロー 業利用アド 業利用アド 業利用アド 業利用アド ※ 派アドバイ 	 専門職員) 一職員 つ職員 つ職員 つ 16 名兼務 - (名誉所長) ボバイザー ボバイザー ボバイザー ボバイザー ボバイザー ボバイザー ボバイザー ボバイザー 	 「Iesari 「塚田 中上 竹田 竹田 代田 太田 太田 (森県) (太熊) 	Fabio 幸 悦子 美子 和 女明 真一 博純夫
安 特 産 産 産 産 光 ア	 研究員 主事(事務 パートナー 全管理課 副所長ほれ 別フェロー 業利用アド 業利用アド 業利用アド 二素利用アドバイ ドバイザー 	 専門職員) 一職員 つ職員 つ職員 つ職員 ついても ついても ついても ついても ジョント・ ジョント・<!--</td--><td> 「Iesari 「塚田 中上 竹田 竹田 代田 太田 太正 森 東 末 末 </td><td>Fabio 幸 悦 美 公 段 眞 小 二 山 美 公 資 小 二 山 二 山 二 山 二 山 二 山 二 山 二 山 二 山 二</td>	 「Iesari 「塚田 中上 竹田 竹田 代田 太田 太正 森 東 末 末 	Fabio 幸 悦 美 公 段 眞 小 二 山 美 公 資 小 二 山 二 山 二 山 二 山 二 山 二 山 二 山 二 山 二

SES=スプリングエイトサービス

10.3 委員名簿

(1) あいちシンクロトロン光センター運営委員会

氏 名	所 属 等
池口 達治	あいち産業科学技術総合センター 所長
ブルーム加田	一般財団法人ファインセラミックスセンター
口川 田加里	材料技術研究所 機能性材料グループ グループ長
磁社 曲弐	株式会社豊田中央研究所 エマージング研究部門 分析研究領域
	リーディングリサーチャー
伊藤 みほ	株式会社デンソー 先端技術研究所長兼マテリアル研究部長
加藤一政捕	大学共同利用機関法人自然科学研究機構 分子科学研究所
	極端紫外光研究施設 特任教授特任教授
木下 丰介	トヨタ自動車株式会社
小下 主川	電動化・環境材料技術部 材料基盤開発室 室長
国征正洋	株式会社東レリサーチセンター
	表面科学研究部 第2研究室 主任研究員
佐宗 章弘	国立大学法人東海国立大学機構(名古屋大学)機構長補佐(副総長)
末吉 敏弘	経済産業省中部経済産業局 地域経済部産業技術課長
鈴木 貞彦	丸ス釉薬合資会社 代表社員
竹内 恒博	学校法人トヨタ学園豊田工業大学教授
田中 三郎	国立大学法人豊橋技術科学大学 副学長
宮田 市 乙	国立研究開発法人産業技術総合研究所 中部センター 材料・化学領域
	極限機能材料研究部門 ナノポーラス材料グループ 主任研究員
永田 謙二	国立大学法人名古屋工業大学 産学官金連携機構 副機構長
藤井 則彦	愛知県経済産業局産業部産業科学技術課長
合临 試二	国立大学法人東海国立大学機構(名古屋大学)
四 叫	シンクロトロン光研究センター センター長
村上 涼	名古屋商工会議所 産業振興部 モノづくり・イノベーションユニット長

氏名	所属等
國枝 秀世	あいちシンクロトロン光センター 所長
竹田 美和	あいちシンクロトロン光センター 特別フェロー
岡島 敏浩	あいちシンクロトロン光センター 副所長
渡辺 義夫	あいちシンクロトロン光センター 主席研究員
砥綿 眞一	あいちシンクロトロン光センター 産業利用アドバイザー
田渕雅夫	名古屋大学シンクロトロン光研究センター 教授
加藤 久也	あいち産業科学技術総合センター 共同研究支援部長兼試作評価室長
小月月日	あいち産業科学技術総合センター
小久休切倒	計測分析室長兼シンクロトロン光活用推進室長
老山 / / / / / / / / / / / / / / / / / / /	あいち産業科学技術総合センター
19日 信之	共同研究支援部 シンクロトロン光活用推進室 主任研究員

(2) あいちシンクロトロン光センター成果公開無償利用事業課題審査委員会

10.4 支援職員(研究者)名簿

大学連合からの支援職員に関する取決め第3に基づく支援職員(研究者)

所属大学	職名	(財団における職名)	氏 名
名古屋大学	シンクロトロン光研究センター教授	(主幹研究員)	高嶋 圭史
名古屋大学	シンクロトロン光研究センター教授	(主幹研究員)	田渕 雅夫
名古屋大学	シンクロトロン光研究センター教授	(主幹研究員)	Lenard Michel Gabriel Chavas
名古屋大学	シンクロトロン光研究センター准教授	(主任研究員)	伊藤 孝寛
名古屋大学	シンクロトロン光研究センター准教授	(主任研究員)	梅名 泰史
名古屋大学	シンクロトロン光研究センター准教授	(主任研究員)	杦本 泰伸
名古屋大学	シンクロトロン光研究センター特任准教授	(主任研究員)	櫻井 郁也
名古屋大学	シンクロトロン光研究センター助教	(研究員)	永江 峰幸
名古屋大学	シンクロトロン光研究センター助教	(研究員)	郭 磊
名古屋大学	シンクロトロン光研究センター特任助教	(研究員)	藤本 將輝
名古屋大学	工学研究科教授	(主幹研究員)	宮崎 誠一
名古屋大学	工学研究科助教	(研究員)	小川 智史
名古屋工業大学	工学研究科教授	(主幹研究員)	井田 隆
名古屋工業大学	工学研究科准教授	(主任研究員)	山本 勝宏
豊田工業大学	工学研究科教授	(主幹研究員)	竹内 恒博
豊田工業大学	工学研究科准教授	(主任研究員)	松波 雅治
豊橋技術科学大学	応用化学・生命工学系教授	(主幹研究員)	水嶋 生智
豊橋技術科学大学	応用化学・生命工学系助手	(研究員)	藤澤 郁英

付録

共用ビームライン

		ビームライン名	測 定 手 法
1	BL1N2	軟 X 線 XAFS・光電子分光 II	軟X線 XAFS、超軟X線 XAFS、光電子分光
2	BL2S1	単結晶X線回折(名古屋大学)	単結晶 X 線回折
3	BL5S1	硬X線XAFS I	硬X線 XAFS、蛍光X線
4	BL5S2	粉末X線回折	粉末X線回折
5	BL6N1	軟X線XAFS・光電子分光 I	軟X線 XAFS、光電子分光
6	BL7U	真空紫外分光	真空紫外分光、超軟X線XAFS、光電子分光
\bigcirc	BL8S1	薄膜X線回折	X線反射率、薄膜表面回折
8	BL8S2	X線トポグラフィ・X線CT(愛知県)	X線トポグラフィ、X線CT
9	BL8S3	広角・小角X線散乱	広角・小角散乱
10	BL11S2	硬X線XAFS II	硬X線XAFS、蛍光X線

光源の性能

直線加速器【S-band】	電子エネルギー:50MeV	
ブースターシンクロトロン	電子エネルギー:50MeV-1.2GeV、周長:48m	
	自然エミッタンス:200nm・rad	
蓄積リング	蕃積電子エネルギー:1.2GeV、周長:72m	
	自然エミッタンス:53nm·rad、蓄積電流:300mA	
常伝導偏向電磁石【8台】	磁場強度:1.4T、偏向角:39°	
超伝導偏向電磁石【4台】	磁場強度:5T、偏向角:12°	

鉄道

- 「名古屋」(地下鉄東山線)→「藤が丘」(東部丘陵線リニモ)→「陶磁資料館南」
 ※名古屋駅から約 50 分
- 「岡崎」「新豊田」「高蔵寺」(愛知環状鉄道)→「八草」(東部丘陵線リニモ)→「陶磁資料館南」

道路

- 東名高速道路・名古屋 IC より東へ約 7km
- 東名高速道路・日進 JCT → 名古屋瀬戸道路・長久手 IC より東へ約 3km
- 東海環状自動車道・豊田藤岡 IC → 猿投グリーンロード・八草 IC より西へ約 800m
本年次報告に記載するあらゆる形のコンテンツの著作権は、当財団及び コンテンツ提供者に帰属しています。著作権者の事前の承諾なしに、本 書のいかなる形式の複製または転載も行うことはできません。

あいちシンクロトロン光センター 2021年度 年次報告 2022年11月発行

公益財団法人科学技術交流財団 あいちシンクロトロン光センター

〒489-0965 愛知県瀬戸市南山口町250番3 tel:0561-76-8331 fax:0561-21-1652 mail:aichisr@aichisr.jp

あいちシンクロトロン光センター

〒489-0965 愛知県瀬戸市南山口町250番3 TEL 0561-76-8331(代表) FAX 0561-21-1652 https://www.aichisr.jp/