

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

K 吸収端 📃 L 吸収端

※Ca-K、Sc-K、Sn-L、Sb-L端の測定も可能な場合あり

P13

18

Tm Yb

Lu

## 硬X線XAFSビームラインBL5S1の現状とBLスタディ結果

(公財)科学技術交流財団 あいちシンクロトロン光センター1 スプリングエイトサービス株式会社<sup>2</sup>

野本 豊和1 , 廣友 稔樹2



BL5S1は、硬X線領域のXAFS測定によって 材料中の原子の化学状態や局所構造を解析す ることで、付加価値の高いものづくりの支援 を行うことを目的としたビームラインである。 現在チタン(Ti)からモリブデン(Mo)ま でのK-吸収端、セシウム(Cs)からビスマス (Bi)のL-吸収端を測定対象としている。 透過法、蛍光法、転換電子収量法による測定 が可能であり、in-situ XAFS実験をサポート する実験ガス供給排気設備も備えている。 更に、大型の光学定盤を備えていることから、 持ち込み装置を使用した自由度の高い実験や、 大きな試料の測定が実施可能である。

希薄試料の蛍光XAFS測定

## ビームライン光学系 実験ハッチ 四象限スリット 水冷四象限スリット 四象限スリット BL5S 後置ミラ 高次光除去ミラー (Auコート・平面) (Rhコート・円筒面) 前置ミラー (Rhコート・平面) 一結晶分光器 (Si(111)) 超伝導偏向電磁石 ビームライン性能 測定対象元素 10 13 14 15 16 17 sec Li Be вс N O F Ne [photons/ P S AI Si CI Ar Na Mg 9 10 11 12 6 7 8 3 5 Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se K Ca Br Kr 10 Flux Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Rb Sr Cs Ba \*1 Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn hoton Fr Ra \*2 Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

BLスタディ結果等



## -10∟ 0 8300 8320 8340 8360 8380 8400 2 6 8 10 Wavenumber [Å-1] Photon energy [eV]

希薄試料の蛍光XAFS測定はBL5S1で頻繁に行われる測定である。今回は、0.01M、 希薄蔵料の重光XAFS測定はBLSSIで頻繁に行われる測定である。今回は、0.01M 0.001M NiCL2溶液について蛍光XAFS測定を行った。また、比較のために1M NiCL 溶液について透過XAFS測定を行った。その結果、XANESではいずれも透過法と同 等の5/Mの良いスペクトルが得られた。EXAFSについては、0.001Mでは20 minの 測定では5/Mの悪いが、60minの測定では波数10Å・程度までは解析可能なスペク トルに改善された。 溶液試料は弾性散乱の強度が強く、検出器が飽和しやすくなる傾向があるため、検 出器を遠ざけることを余儀なくされるケースが多い、そのため、現在は弾性散乱を 抑えつつ、目的の蛍光X線の強度を高めるスタディを行っている。

## 全反射蛍光XAFS測定

9000 13000 17000 21000 25000

2.5

Au≳ラ-(mrad)

なし

tのサイズ(共さx福m

光の形

0.5 x 0.5 ( • 0.5 x 0.5 ( •

1.0 x 5.0 (

Photon energy [eV]

10<sup>9</sup>\_\_\_\_\_ 5000

通称

低エネルギー配置

通常エネルギー配置

Nor

0 5960

5980

利用可能 分光結晶 Rhミラー

5~9 \$(111) 3.14 7.0

 $7 \sim 18$ Si(11 3.14 なし

グラフ

۲

•



Cr(OH)

6060

6040

\*1

\*2

6020 6000 Photon energy [eV]

0.05

0.04



LCFの結果から、1°、5°ではX線の侵入深さが深いためバルクのCr-foil成分だけなのに対し、 CEYではCr(OH)或分が11%含まれていることが分かった。さらに0.1°の全反射条件では、 Cr(OH)或分が36%に増加しており、より表面敏感が認定が行うことができていることを示唆している。 この結果は、動径分布関数の第一配位圏のビーク位置からも支持される。

| 乡炽动个   | スロルイイレノシェン用 3年間の参照言 |   |    |    |    |    |    |     |      |    |      |    |    |    |    | 照試料 | 料整備状況 |      |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |   |    |    |      |    |    |    |    |     |
|--------|---------------------|---|----|----|----|----|----|-----|------|----|------|----|----|----|----|-----|-------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|----|----|------|----|----|----|----|-----|
|        | Ti                  | v | Cr | Mn | Fe | Со | Ni | Cu  | ı Zn | Ga | a Ge | As | Se | Br | Sr | Υ 2 | Zr N  | lb N | 10 | Ru | Rh | Pd | Ag | Ва | La | Ce | Pr | Nd | Sm | Eu | Gd | Тb | Dy | Ηf | Та | W | Re | Ir | Pt / | Au | Hg | Pb | Bi | 計   |
| 2020年度 | 16                  | 8 | 7  | 17 | 18 | 10 | 14 | 7   | 4    | 1  | 2    | 0  | 4  | 0  | 4  | 3   | 4     | 5    | 6  | 2  | 1  | 1  | 2  | 2  | 7  | 4  | 2  | 1  | 1  | 2  | 2  | 0  | 0  | 0  | 2  | 6 | 0  | 1  | 2    | 0  | 0  | 0  | 2  | 170 |
| 2021年度 | 3                   | 0 | 2  | 0  | 18 | 17 | 1  | 17  | 7 2  | 0  | 0    | 0  | 2  | 0  | 0  | 1   | 0     | 0    | 2  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 2 | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 70  |
| 2022年度 | 3                   | 1 | 4  | 3  | 4  | 2  | 19 | ) 1 | 0    | 0  | 0    | 0  | 0  | 2  | 2  | 0   | 0     | 0    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 2 | 0  | 0  | 0    | 0  | 0  | 0  | 0  | 43  |

LCFの結果 Cr(OH)<sub>3</sub> Cr-foil R-facror 0.36 0.64 0.06

> 0 1 0 1

0.11 0.89 0.02

整備済の参照試料はユーザも自由に利用することができる。 BL5S1、BL11S2ホームページに参照試料リスト公開中

を四手料の数借

