第1回AichiSRシンクロトロン光産業利用セミナー 第74回SPring-8先端利用技術ワークショップ 『放射光利用技術活用講座』

硬X線光電子分光法(HAXPES) 測定技術の特徴と活用事例の紹介

2022. 2. 28

SPring. 8

1

Outline

- X線光電子分光法
- HAXPESの特徴
- HAXPESの活用事例
 - Ni/SiC 界面反応層の分析
 - バンドアライメント評価
 - トランジスタのポテンシャル分布評価
 - リチウムイオン電池の表面被膜の分析
- HAXPESの利用が可能なビームラインについて
- まとめ

SPring. 8

・X線光電子分光(X-ray Photoemission Spectroscopy: XPS) 軟X線(1.2~1.5 keV)

SPring. 8

2022. 2. 28

JASRI

・硬X線光電子分光(Hard X-ray PhotoEmission Spectroscopy: HAXPES)
 ・硬X線(数 keV~十数 keV)
 励起光としてエネルギーの高いX線を使用する。基本的な原理はXPSと同じ。

X線光電子分光法で得られる情報

状態分析

定量分析 (組成、デプスプロファイル)

Fig. 1. Fe 2p spectra obtained from the reference samples. Arrows indicate satellite peaks characteristic for Fe²⁺ and Fe³⁺.

Appl. Surf. Sci. 100/101 (1996) 36

X線光電子分光法で得られる情報

キャリアタイプ (フェルミ準位に依存したピークシフト)

Fig. 2. XPS spectra of silicon wafers with hydrogen-terminated (001) surface for intrinsic silicon and the p- and n-types.

JASRI

2022. 2. 28

バンドベンディング

FIG. 1. (Color online) (a) Schematic of the experimental geometry. The angular distribution of photoemission is simultaneously measured in the range from 0 (normal) to 60°, being related with the electron escape depth λ^{θ} , where θ represents the emission angle. (b) Model for SBB in Bi₂Se₃, where ΔV represents the bending amplitude. (c) Representation of normal photoemission of Se $2p_{3/2}$. The vertical bars indicates the depth-dependent contribution of Se $2p_{3/2}$ to the normal photoemission.

C. E. ViolBarbosa et al., Phys. Rev. B, 88 (2013) 195128

Source $\theta = 90^{\circ}$ d_1 λ λ λ λ

JASRI

2022. 2. 28

深さ方向の情報

(A): Al-1; (B): Al-2. Take-off angles: a, 90; b, 70; c, 50; d, 30 degrees. The peaks corresponding to metal and oxide components are denoted by M and O, respectively.

d₂

HAXPESの特徴 検出深度が大きい

HAXPESの特徴 測定可能なピークが多い

XPS

- 1.5 keV以下ではピークが密集
 →他のピークと重畳しやすい
- s軌道以外はピーク分裂で解析困難

HAXPES

JASRI

- 共存元素の内殻やオージェ、プラ ズモンロス等のピークの重畳を 回避しやすい
- ピーク分裂がなく解析が容易な 深い1s準位が使える (Al 1s: 1.65 keV, Si 1s: 1.84 keV)

Element	1s	2s	2p1/2	2p3/2	3s	3p1/2
1 H	14					
2 He	25				~	1.5 keV
3 Li	55				1	5∼8 keV
4 Be	112				Q	~ 14 koV
5 B	188				0	
6 C	284					
7 N	410	37				
8 O	543	42				
9 F	697					
10 Ne	870	49	22	22		
11 Na	1071	64	31	31		
12 Mg	1303	89	50	50		
13 Al	1560	118	73	73		
14 Si	1839	150	100	99		
15 P	2146	189	136	135		
16 S	2472	231	164	163		
17 Cl	2822	270	202	200		
18 Ar	3206	326	251	248	29	16
19 K	3608	379	297	295	35	18
20 Ca	4039	438	350	346	44	25
21 Sc	4492	498	404	399	51	28
22 Ti	4966	561	460	454	59	33
23 V	5465	627	520	512	66	37
24 Cr	5989	696	584	574	74	42
25 Min	6539	769	650	639	82	47
26 Fe	7112	845	720	707	91	53
2/ CO	7709	925	793	//8	101	59
28 NI 20 Cu	8333	1009	870	853	111	68
29 CU	8979	1097	952	933	123	11
30 ZN	9659	1196	1045	1022	140	91
31 Ga	10367	1299	1143	1116	160	104
32 Ge	11103	1415	1248	1217	180	125
33 AS	11867	1527	1359	1324	205	146
34 Se	12658	1052	14/4	1434	230	167
30 Br	13474	1/02	1724	1000	257	189

XPS

JASRI

2022. 2. 28

HAXPES

Spin-orbit splitting によるピークの分裂がない準位を選択することで, 解析が比較的容易になる場合がある。

HAXPESの近年の動向

HAXPESに関連した論文出版数、引用数は年々増加している。 分析手法としてHAXPESの認知度は高まってきている。

Web of science(https://www.webofscience.com/wos/woscc/basic-search) 検索keyword HAXPES or "hard x-ray photoelectron" or "hard x-ray photoemission" など

HAXPESの活用事例

SPring. 8

- Ni/SiC 界面反応層の分析
- バンドアライメント評価
- トランジスタのポテンシャル分布評価
- リチウムイオン電池の表面被膜の分析

事例1 Ni/SiC 界面反応層の分析

事例1 Ni/SiC 界面反応層の分析

Ni/SiC-sub.の熱処理前後の界面の結合状態をHAXPESで評価。

第1回AichiSRシンクロトロン光産業利用セミナー

事例1 Ni/SiC 界面反応層の分析

第1回AichiSRシンクロトロン光産業利用セミナー 第74回SPring-8先端利用技術ワークショップ 『放射光利用技術活用講座』

事例2 バンドアライメント評価

2022. 2. 28

SPring 8

Metal/SiO₂/SiC-sub.バンドアライメントのゲート電極金属依存性評価

•4H epitaxial SiC(n-type: 1.0×10^{16} /cm³) grown on 4H SiC substrate, 4° off, Si-face •4H epitaxial SiC(p-type: 6.0×10^{17} /cm³) grown on 4H SiC substrate, 4° off, Si-face

第1回AichiSRシンクロトロン光産業利用セミナー

事例2 バンドアライメント評価

ゲート電極金属に依存してSiC及びSiO2由来のピークがシフト。

SPring. 8

2022. 2. 28

JASRI

事例2 バンドアライメント評価

ゲート電極金属(仕事関数)に依存したバンドアライメントの変化が認められた。

事例3 トランジスタのポテンシャル分布評価

事例3 トランジスタのポテンシャル分布評価

電圧印加HAXPESによる InGaZnO薄膜トランジスタ動作下の評価

電圧印加用のサンプルホルダー

JASRI

事例3 トランジスタのポテンシャル分布評価

バイアス電圧(V_{ds} and V_{q})に依存したピークシフトを確認。

事例4 リチウムイオン電池の表面被膜の分析

事例4 リチウムイオン電池の表面被膜の分析

LiNiMnO正極ポリフッ化ビニリデン(PVdF)とスチレンブタジエン共重合体(SBR)+増粘剤である カルボキシメチルセルロースナトリウム(CMC)を混合したSBR/CMC結着剤を比較

Figure 6. Photoelectron spectra of the LiNi_{0.5}Mn_{1.5}O₄ composite electrodes after 50 cycles with different binders. (a) SOXPES O 1s (penetration depth: ~10⁰ nm), (b) HAXPES O 1s (~10¹ nm), and (c) HAXPES F 1s (~10¹ nm). The cells were cycled with 1 mol dm⁻³ LiPF₆ in EC/DMC at 45 °C.

JASRI

2022. 2. 28

H. Isozumi et al., Appl. Energy. Mater, 3 (2020) 7978

SBR結着剤の組成にニトリル基 を付与することで、電解質塩に よる厚い不動態被膜が形成され ることが分かった。

第1回AichiSRシンクロトロン光産業利用セミナー 第74回SPring-8先端利用技術ワークショップ 『放射光利用技術活用講座』

HAXPESの利用が可能な ビームラインについて

SPring 8

HAXPES Beamlines in the world

Japan

SPring-8

- •BL09XU (Res. & Util. Div., JASRI)
- •BL12XU (NSRRC, Taiwan)
- •BL16XU (SUNBEAM)
- •BL19LXU, BL29XU (RIKEN)
- BL24XU (Hyogo prefecture)
- BL28XU (Kyoto Univ.)
- •BL36XU (RIKEN)
- BL46XU (Industrial Div., JASRI)

(http://www.mext.go.jp)

2022. 2. 28

JASRI

United States NSLS-II

- •SST-2 (NIST) ALS •9.3.1
- (Tender X-Ray Spectroscopy)
- APS •Sector 5-IDC
- •Sector 33-ID-D

Asia

Indus-2 •PES-BL14 CLS •SXRMB

Europe

ESRF •BM25 SpLine **BESSY II** •FMII •KMC-1 DESY •BW2 PFTRA III •P22 Soleil Galaxies Diamond •109 SI S •X07MB

各国の放射光施設でHAXPESが稼働している。 日本(SPring-8)は特に研究が盛ん。

HAXPESの利用が可能なBL(国内)

SPring 8

2022. 2. 28

JASRI

兵庫県佐用町 播磨科学公園都市 1997年 供用開始 周長:1436 m 電子エネルギー:8 GeV

あいちシンクロトロン 光センター

愛知県瀬戸市 2013年 供用開始 周長:72 m 電子エネルギー:1.2 GeV

物質・材料科学、生命科学、宇宙・惑星科学、考古学、科学鑑定など幅広い分野で利用されている。

HAXPESの利用が可能なBL(国内) SPring-8 BL46XU(産業利用III) BL46XU

JASRI

2022. 2. 28

	EH2			
入射光エネルギー (keV)	6,8,10 DCM(Si(111)),CCM(Si(444)			
偏光	直線(水平)			
集光サイズ H×V (µm²)	50~200×20			
フラックス (photons/s)	> 10 ¹¹			
総エネルギー分解能 (meV)	300 @8keV			
光電子取り込み角	± 7°			
真空度 (Pa)	<5 × 10 ⁻⁶			
特徴、コンポーネント	 ・半自動測定 ・中和銃 ・ツインアノードX線源 ・Arイオン銃 ・トランスファーベッセル ・加熱サンプルステージ ・電圧印加サンプルステージ ・UV光源 			

HAXPESの利用が可能なBL(国内) AichiSR BL6N1(テンダーX線XAFS・XPS)

SPring. 8

2022. 2. 28

JASRI

	BL6N1				
入射光エネルギー (keV)	1.75-5 DCM(Insb(111), Ge(111), Si(111)				
偏光	直線(水平)				
集光サイズ H×V (mm ²)	1~2×2				
フラックス (photons/s)	5 × 10 ¹⁰				
総エネルギー分解能 (meV)	700 @3.0keV				
光電子取り込み角	± 6°				
真空度 (Pa)	10 ⁻⁶ ~ 10 ⁻⁷				
}徴、コンポーネント	・真空化、大気圧下での XAFS測定 ・中和銃 ・ツインアノードX線源 ・Arイオン銃 ・トランスファーベッセル				

HAXPESの利用が可能なBL(国内)

SiO₂(10nm)/Si-sub.のケース

2022. 2. 28

まとめ

・硬X線光電子分光法(HAXPES)は深さ数十nmの非破壊分析が可能な手法。

定性分析、状態分析、組成分析が可能。

・国内放射光施設ではAichi SRとSPring-8で一般利用が可能。 産業利用や学術分野など様々な分野で利用が進んでいる。

・試料構造や分析目的と各施設の得意とするX線エネルギー 領域、装置の特徴などを考慮して両者を使い分けることが重要。

