

グリーンビークルへの材料学的課題

- ・環境への配慮:排気ガス NO_x, CO₂, C_xH_v
- ・省エネルギー:資源問題,高効率

解析支援設備間連携の現状

定量性·汎用性

electron Physical Science Imaging Centre (ePSIC)

連携が進まないのは何故か

✓測定原理基礎に対する理解不足
 科学的無知
 カタログ的知識による先入観
 ノウハウ主義

✓セクト主義の弊害 物理学帝国主義 ー見てはいけないー 大型装置導入の政治利用:予算獲得のための方便

Let's start physics!

化学反応その場測定:マクロとミクロ マルチスケールな測定の重要性

SOR/複合電子分光で得られる情報

SOR-XAFS vs. TEM-EELS

EELS検出における運動量保存則とX線偏光

The search light effect

Electron Linear Dichroism測定(単結晶粒)

XMCD vs. EMCD

$$\sigma_{XAFS} = 2\pi \hbar \alpha \omega \sum_{i,f} \left| \left\langle \psi_f \left[\mathbf{e} \cdot \mathbf{r} \right| \psi_i \right\rangle \right|^2 \delta \left(E_f - E_i - E \right)$$
$$\frac{\partial \sigma}{\partial E \partial \Omega} = \frac{4(1 - \beta^2)}{a_0^2 q^4} \frac{k_f}{k_i} \sum_{i,f} \left| \left\langle \psi_f \left[\mathbf{q} \cdot \mathbf{r} \right| \psi_i \right\rangle \right|^2 \delta \left(E_f - E_i - E \right)$$

XMCD vs. EMCD

情報・統計処理によるデータ解析手法の応用

デジタル技術による自動測定がもたらすもの

ビームロッキング: (K_{1-x}Na_xCaLi)NbO₃-αKTiNbO₅-BaZrO₃-MgO-Fe₂O₃

インフォマティクス技術の応用

Non-negative entries for all the matrices: Non-negative Matrix Factorization (NMF)

Tiドープへマタイト光触媒への応用

反応科学超高圧走査透過電子顕微鏡システム

JEM-1000K RS

主な装置性能

厚い試料の3次元立体観察 (3次元観察装置)

元素マッピング (EELS機能、元素分析・解析装置)

ガス環境下での観察 (多機能ガス環境試料室)

元素分析と構造解析が同時に可能 (元素分析、STEM機能)

半導体デバイス等の歪み解析 (3段系集束レンズ)

化学との融合 (元素分析、EELS機能)

物性と原子レベル構造の同時測定 (STEM、EELS機能)

重量	約330ton	
E	約10,000mm	
٢	約4,000mm	
準加速電圧	1000, 800, 600, 400kV	
M	点分解能	: 0.15nm (1000kV)
	格子分解能	: 0.12nm (1000kV)
EM	分解能	: 1nm(1000kV)
電圧発生方式	2タンク方式	
電圧安定度	8×10 ⁻⁷ /min	
<u></u>	TEM	: 200 ~ 1,200k
	STEM	: 1,000 ~ 2,000k
機能ガス環境試料室	压力制御範囲:1 ~ 13,300Pa(差動排気方式)	
ネルギー分解能	1.5eV以下(イメージングフィルター)	

_

超高圧電子顕微鏡技術の重要性

●日本独自技術として
 厚い試料: FIBサンプルの分析
 ガス環境セル:化学反応その場観察
 STEMトモグラフィー:3D観察
 産業界への貢献

●新しい物理:多彩なテクニック
 臨界電圧効果
 相対論効果
 磁性測定

3D reconstructed image of a budding yeast

specimen thickness $\sim 1 \mu m$

 $2\,\mu$ m

反応科学超高圧電子顕微鏡+四重極質量分析計

自動車排気ガス浄化触媒オペランド観察 窒素酸化物(NO)の浄化

名大・トヨタ自動車・日本電子 2018年8月10日 共同プレス発表

マルチスケール情報

80-200 kV級S/TEM群

冷陰極プローブ球面収差補正 分析STEM

最新収差補正STEM-EELSによるマッピング

場の可視化: ヘテロ界面

June 2015 Scientific Reports 5:10040

場の可視化: ヘテロ界面

June 2015 Scientific Reports 5:10040

電子分光走查透過電子顕微鏡EM2100M

名大は分光に強い

X-ray channeling pattern (Ca-K) X-ray channeling pattern (Sn-L)

{Eu-L} Ca{1.8}Eu_{0.2}Sn_{0.8}Y_{0.2}O₄ 特性x線チャネリングパターン

リチウムイオン二次電池の リチウム化学分析マップ

最後に:この機会に云いたいこと

- ・放射光分光と電子顕微分光は競合しない 互いに対等かつ相補的な関係
- 科学的知見に基づいた適材適所
 適切な使い分け:時間・空間スケール、汎用性、
 定量性、その他
 同一試料・同一場所の分析
- 真の意味での(ハイレベルの)コラボが必要
 電子顕微鏡は虫眼鏡ではない/物性物理学のツール