様々な反応場中での新規蛍光体酸化物 合成と元素の価数・配位環境の変化

(豊橋技大)中野裕美, 紙本小夏, 前田 真志 (フルテック(株))古田吉雄

使用BL

- 2018年6月19日 BL6N1 (1シフト)
- 2018年7月26日 BL5S1 (1シフト)
- 2018年9月11日 BL1N2 (2シフト)
- 2018年9月19日 BL5S1 (1シフト)
- 2018年10月11日 BL5S1 (1シフト)
- 2018年10月12日 BL1N2 (2シフト)

☆1月には有償でBL11S2 を使用している

• 新規蛍光体の取り組み

• 合成時の反応場の工夫

• Mn4+を賦活材とした蛍光体の事例

シリケート系Eu²⁺を賦活材とした蛍光体の事例

まとめ

あいちSR光の必要性

• 添加イオンの価数変化

• 発光中心イオンの配向環境の変化

 XAFS結果と発光特性、結晶構造との関連性を もとにメカニズムの解明

白色LEDの発光原理と市場規模

「白色LEDの技術ロードマップ」 (LED照明推進協議会)より引用

T

新規蛍光体の色度

Compositions	Chromaticity					
Compositions	x	У				
$Li_{1.11}Ta_{0.89}Ti_{0.11}O_3:Eu^{3+}$	0.675	0.325				
$Li_{1.03}(Ta_{0.2}Nb_{0.8})_{0.97}Ti_{0.03}O_3:Er^{3+}$	0.350	0.643				
$Li_{1.08}(Ta_{0.4}Nb_{0.6})_{0.92}Ti_{0.08}O_3:Tm^{3+}$	0.146	0.053				
$Li_{1.14}(Ta_{0.6}Nb_{0.4})_{0.86}Ti_{0.14}O_3:Dy^{3+}$	0.409	0.385				

ノは10億分の1)で他	開発した。光の波長の	化物系の蛍光体材料を	は、赤色純度が高い酸	ターの中野裕美教授	科学大学研究基盤セン	【名古屋】 豐橋技術		ンオ	フト	リ色		ア 住 豊	くに橋	で光		高本大	交月	う月	マチチ	云色	
ためバックライトに適	る波長帯も極めて狭い	自体は白色で、励起す	が極めて少ない。材料	駄(スペクトルロス)	く、他色を分離する無	した。赤色純度が高	物固溶体を母体材料と	ンタル、チタンの酸化	ンとし、リチウム、タ	イオンを発光中心イオ	3価のユウロピウム	れる。	向上に役立つと期待さ	光源の赤色の再現性の	イトやプロジェクター	ィスプレーのバックラ	最も良く励起する。デ	400 ア がの 紫色光 で	実用化されている波長	小さい。蛍光体として	の波長の発光が極めて
応用範囲がさらに広が	開発がさらに進めば、	ED)の実用化技術の	色発光ダイオード(L	る。励起光としての青	料などにも応用でき	や、偽造防止用印刷顔	のみ反応するセンサー	いため、これらの色に	波長帯でしか励起しな	色光、青色光とも狭い	色光でも励起する。紫	波長468ナがの青	く、理論値にも近い。	子効率)が8%と高	に変わる効率(内部量	収したエネルギーが光	影響も受けにくい。吸	く、経時変化や温度の	成できる。耐湿性が高	なり、低温・常圧で合	窒化物系蛍光体と異

日刊工業新聞2016年1月

イノベーション・ジャパン2016,2018 出展

Г

赤色蛍光体の励起・発光スペクトル

特徴:400 nm,468 nm の励起光 (実用化しやすい励起波長) 625 nm の色純度の高い赤色

特許出願中(特願2015-209642)

解説:セラミックス特集号53(2018)No.7

LI-TA-TI-O系赤色蛍光体

- ・酸化物としての安定性
- 焼成温度が低い
 希土類種による広い発光色

LTT:Eu³⁺蛍光体

可視光

ブラックライト

Nakano et al. J. Am. Ceram. Soc. 95 [9], 2795-2797 (2012)

Motivation: low energy

Short sintering time

Lower temperature

For good applications

M-phase area in Li-Nb-Ti-O system

Smith and West, Mat. Res. Bull. (1992)277 700°C2~3h preheating,1000°C1-2days heating, and1100°C2~10 days for complete reaction.

長時間焼成必要(Tiの少ない領域)

小型加圧ガス雰囲気炉とプラズマ照射雰囲気炉

加圧ガス雰囲気炉 国内特許出願2017年12月

フルテック(株)社製 共同研究中 プラズマ照射雰囲気炉

0.1~0.6MPa 1100度まで焼成可能 (1500度までの電気炉もある) プラズマ照射電圧 ~9kVまで 真空引き/酸素導入 / 酸素保持 時間を パルス制御 Relationship between grain size and gas pressure

30分の焼成時間で均質な材料合成に成功

Ti 20 mol% at 1373 K for 30 minutes under 0.35 MPa

Mechanism

CoO中の酸素拡散係数の酸素分圧依存性

セラミックス25(11) (1990) Solid State Ionics 28-30(1988) 1221

Mechanism of anisotropic motion of oxygen

		superstructure	Ti ³⁺	R-factor
Li _{1.05} Nb _{0.95} Ti _{0.05} O ₃	Ti = 5%	\triangle	17.7%	0.0135234
Li _{1.25} Nb _{0.75} Ti _{0.25} O ₃	Ti = 20%	0	26.5%	0.0197593

Т

新規蛍光体 LTT:Mn4+

なぜ発光強度が低いのか? Mnの価数に着目

Mn,Tiの価数 XANES測定結果

Mn-KのXANESスペクトル

Li₂TiO₃: Mn⁴⁺の励起・発光スペクトル

シリケートの構造相転移

シリケート中のPイオンの価数変化

 $(Ca_{1.98-x/2}Eu_{0.02}\Box_{x/2})(Si_{1-x}P_x)O_4 \ (x = 0.02, 0.2)$

avelength (n<mark>m</mark>)

<u>Eu添加量と結晶構造の関係</u>

シリケート蛍光体のモデル図

 $\alpha'_{\rm L}$ -Ca₂SiO₄

Ca(1)		
Ca(2)	4	

Ca-Oの原子間結合距離

2.80 Å

T

XAFSによる配位環境の比較

まとめ

ご清聴ありがとうございました

謝辞:

田渕先生、東コーディネーター、各BL担当のスタッフ のみなさまに感謝申し上げます。 科学研究費補助金 (No.16K06721) により遂行。