2019.3.5 愛知芸術文化センター 12階 アートスペースA室 第7回あいちシンクロトロン光センター事業成果発表会

ハイスループット技術と機械学習を活用した 機能性材料探索

藤本憲次郎1・相見晃久1・康本航洋1・北嶋友樹1・

山本信雄²•下西裕太²•吉田周平²•大木島俊²

1東京理科大学・2株式会社デンソー

AichiSR

様々な分野で材料創製や素材の機能予測におけるAIによる予測がなされるようになってきた。膨大な実験データを基に創出可能な材料 を予測してから合成実験と物性検証をすることで、効率的に材料研究をすすめるケースが報告されている。一方で、その材料予測をする うえで、ばらつきのある実験パラメータではなく、合成プロセスにある一部の条件を統一化させた一連の実験データの生成も材料予測の精 度向上のために求められる。Materials Genome Initiative (MGI)におけるツールのひとつである「Experimental tool」は、研究者の 求める方向性によって様々なため、ニーズによってすべてーから開発しなければならない。

2017年度に効率的な放射光粉末X線回折測定のための治具を開発し、従前の準備の手間を省いて、ある程度の測定することができる ことを確認した。今年度は、最適な治具の利用方法を模索するとともに、並行して開発を進めている自動リートベルト解析ソフト1と組み合 わせて粉体試料の測定・解析の高速化を試みた。 1). A. Aimi, K. Fujimoto, 日本セラミックス協会 第56回セラミックス基礎科学討論会講演要旨集

Fig.1 Fully automatic X-ray diffraction measurement tool for synchrotron radiation

Fig.2 Diffraction image and powder X-ray diffraction patterns of $Ca_{0.97}Bi_{0.03}MnO_{3-\delta}$ (@ BL5S2)

0.620

O2x

Table.1 Lattice parameter of $Ca_{0.9}Bi_{0.1}MnO_{3-d}$ using Rietveld refinement						
	swing	a / nm	b / nm	c / nm	Rwp	S
Capillary		0.531435(3)	0.749138(5)	0.529366(4)	4.858	0.3508
LabXRD		0.53133(2)	0.74908(4)	0.52920(3)	8.687	1.0254
Tool	0°	0.53115(2)	0.74868(4)	0.52959(3)	16.492	1.6187
Tool	5°	0.53132(2)	0.74865(3)	0.52929(2)	7.941	0.7814
Tool	7°	0.53124(1)	0.74897(2)	0.52917(2)	6.25	0.6084
Tool	10°	0.53121(1)	0.74897(2)	0.52921(2)	6.896	0.6722
0.480		0.015	¹ – 0 –	0.220		0.038
0.478	¶ L			0 215		0.036

Fig.4 XAFS measurement image with powder library attached to polyimide tape and XAFS spectrum of Ca_{1-x}Bi_xMnO_{3-d} powder

O1z

Fig.3 Fractional coordinate of Ca_{0.9}Bi_{0.1}MnO_{3-d} using Rietveld refinement

治具の揺動制御により従来測定に近い回折データが得られた。「キャピラリー充填が不要」、「キャピラリー のセンタリングが不要」により、一般的な回折測定であれば従前の倍の試料数が可能になった。また、初期 構造設定に結晶学の知識は必要だが、1試料あたり10分程度での構造精密化が可能となった。XAFS測定 でのペレット化作業も減らすことが可能で、これらの高速・効率化が同一実験条件のビックデータ回収へ貢 献すると期待している。

0.300

O1y