第1回シンクロトロン光産業利用セミナー

~あいちシンクロトロン光センターと立命館大学SRセンターの軟X線を中心にして~ 日時:2018年10月1日,於:愛知県産業労働センター「ウインクあいち」13F 1301会議室

あいちSR BL6N1の現状 ~二結晶分光器更新を中心にして~

名古屋大学シンクロトロン光センター 陰地 宏

1

概要

- 1. 今年度実施した二結晶分光器更新について
- 2. BL6N1で利用可能な分析手法

- 1. 今年度実施した二結晶分光器更新について
- 2. BL6N1で利用可能な分析手法

BL6N1の設置場所

BL6N1の分光範囲

Mono. type	Double crystal monochromator
E range	1.75 – 6 keV (0.7 - 0.2 nm)
Beam size	2.0^{H} mm X 1.0^{V} mm
Ε/ΔΕ	> 2000@3 keV

軟X線と硬X線の中間の エネルギー領域をカバー

Si, P, S, Cl, K, Ca, Tiなど 産業応用上重要な元素の K殻吸収端が測定可

BL6N1の分光範囲

二結晶分光器更新の経緯

- 旧分光器はエネルギー安定性に問題あり。
- エネルギー安定性向上,光量向上,定位置出射 性能の向上,分光結晶切替の迅速化等を目的として,二結晶分光器を更新。
- 2018年3月下旬から旧分光器の撤去,新分光器の設置,分光器前後の輸送部の改造,真空立ち上げ,光学系の調整,テストデータの取得を経て,7月中旬からユーザー利用を再開(Ge(111)については6月中旬から)。
- •分光器更新後,ビームライン性能が大きく向上。

新旧二結晶分光器の設置場所

神津精機2カム式 二結晶分光器 (NSM-4R)

間接水冷式結晶ホルダー →結晶温度安定性が向上 (第一結晶, 第二結晶とも水冷)

チェンバー全体の並進移動で 結晶交換 →迅速な結晶交換が可能に

新二結晶分光器: 駆動軸

	軸名	移動量	最小分解能	駆動方式	旧分光器 駆動方式	
主軸部	θM	0°~75° (15° ~ 72°) *1	0.1"/step	自動	自動	
第一結晶部	Z1	-3 mm~1 mm	0.05 um/step	自動	なし	
	⊿θ 1	±1°(粗動)	0.05"/step	自動		
		0~67''(微動)	0.00168''	自動 (ピエゾ)	手動	
	Ty1	±1°	28"/scale	手動	手動	
第二結晶部	Z2	-3 mm~1 mm	0.05 um/step	自動	なし	
	⊿ θ 2	±1°	0.05"/step	自動	自動 (ピエゾ)	
	Ту 2	±1°	0.05"/step	自動	自動 (ピエゾ)	
架台部	Xt	±42 mm	0.4 um/step	自動	なし	
	Zt	±50 mm	0.278 mm/rev	手動	なし	
*1: 分光範囲内での移動量						

NSM-4R 駆動軸

調整軸が増加→精密な調整が可能に

分光器更新による性能向上①: エネルギー安定性の向上(SK-edge XANES)

旧分光器:SR光導入後エネルギーが安 定するまで2~3時間程度必要

新分光器:SR光導入直後からほぼ安定

分光器更新による性能向上②: エネルギー安定性の向上(XPS, Au4f)

ビームラインにSR光を導入して から光のエネルギーが安定す るまで,実用上,1時間待てば 十分。

Elapsed Time /h Au 4f_{7/2}ピーク位置のMBS開からの時間経過 (MBS開直後の位置を0 eV)

分光器更新による性能向上③: エネルギー安定性の向上(XAFS)

分光器角度を大きく変化させる際のエネルギー再現性も良好。

分光器更新による性能向上④: フォトンフラックスの向上

フォトンフラックス@ hv = 3 keV

crystal	old DXM	new DXM	new /old
InSb(111)	2.2×10^{10}	6.6×10^{10}	3.0
Ge(111)	1.4×10^{10}	5.0×10^{10}	3.5
Si(111)	2.8×10^{9}	2.1×10^{10}	7.6

分光結晶水冷化により,以前より分 光器上流スリットの開口を大きくする ことが可能に。

- フォトンフラックスが向上
- Si(111)が実用的な強度に

分光器更新による性能向上⑤: 定位置出射性能の向上

概要

- 1. 今年度実施した二結晶分光器更新について
- 2. BL6N1で利用可能な分析手法

BL6N1エンドステーション

検出モードによる違い(XAFS)

検出モード	検出対象	対象試料	分析深さ
部分蛍光収量	内殻吸収後に発	・形態を問わない。	数µm~
(PFY)	生する蛍光X線	 ・希薄でも可(数十ppmまで) 	数十µm
	を選択的に検出 	(※高濃度試料ではスペクト ル強度がなまる*)	
全電子収量	試料電流を検出	・導電性のあるもの	数十nm~
(TEY)		・濃度が比較的高いもの	100 nm程度
転換電子収量		(数%以上は必要か)	
(CEY)			

*「自己吸収」効果と呼ぶ

大気圧下XAFSチェンバー

・チェンバー内をHeで置換することにより 大気圧下でXAFS測定が可能

・半導体検出器(SDD)による部分蛍光収量XAFS
・試料電流測定による転換電子収量XAFS
・部分蛍光と転換電子による同時測定も可能

大気圧下XAFS:He置換の効果

Be窓を通して軟X線を真空内から大気圧下に取り出す。 チェンバーをHe 1気圧に置換することでX線が試料まで到達。

大気圧下XAFS: 試料調整例

真空XAFS•XPSチェンバー

SPECS FG 15/40

 全電子収量XAFS(試料電流)
 エネルギー可変・高エネルギーXPS (実用的には1.8-4 keV程度)
 試料帯電の中和(中和銃)

真空XAFS•XPS: 試料調整例

試料を貼付することができる領域の おおよその目安

試料を2枚貼る場合

ビームサイズ ~3 mm _____ ~1 mm

- ・軟X線BL共通 サンプルプレート
- ・プレート1枚に複数の
 試料を貼付可

トランスファーベッセル

- 大気非暴露での試料導入(嫌気性試料)
- BL7UとBL1N2と共通

測定例①: PFY & CEY同時測定

24

測定例②: 化学状態の同定(SK-edge XAFS)

励起原子の価数や化学状態によりスペクトルが変化 →励起原子の化学状態の同定

測定例③:XPS

X線エネルギーを変えて測定

分析深さの異なる測定が可能 高エネルギーのX線を用いれば 検出深度が大きくなる。

励起光エネルギー3 keV以上 で、深さ10 nm以上に存在する Si基板を検出。 (ラボXPSでは検出不可能)

まとめ

- 二結晶分光器更新により...
 - 光のエネルギー安定性が格段に向上
 - フォトンフラックスが向上
 - 定位置出射性能が向上
 - 結晶切替時間が大幅に短縮
- BL6N1で利用可能な分析手法
 - 大気圧下XAFS
 - PFY•CEY同時XAFS測定
 - 液体やウェットな試料の測定
 - 真空下XAFS•XPS
 - TEY XAFS(試料電流法)
 - エネルギー可変で通常より高い励起エネルギーのXPS
 - トランスファーベッセルによる大気非暴露試料導入

ご清聴ありがとうございました! 皆様のご利用を スタッフー同,心よりお待ちしております!

BL6N1スタッフ

村井崇章 (科学技術交流<mark>財団</mark>)

陰地宏 (名古屋大学)

柴田佳孝 (あいち産科技センター)

BL6N1分光範囲(原図)

