あいちSR成果発表会 GISAXS/WAXS測定による天然由来の 界面活性剤の素材表面への作用機構解明 船城健一,川崎惇,小松陽子,山本周平,山田浩司 事洋紡株式会社

近年,有限な石油資源から再生可能なバイオマス資源への原材料 転換が求められている。各種工業用材料にとって界面活性剤は必要 不可欠な成分であるが,環境に調和した界面活性剤として微生物に よってバイオマス資源から量産されるバイオサーファクタント(BS)に着 目した。

その中でオリーブオイルを原料とし天然酵母が作るバイオサーファク タント、マンノシルエリスリトールリピッド(MEL-B)は、糖・糖アルコール・ 脂肪酸を同時に含有するという構造を有しており(図1)、優れた界面活 性能、ラメラ形成能を有する(図2)。この性質を生かして、機能性コー ティング膜の表面均質性及び平滑性を向上させる目的で使用されてい るレベリング剤として、現在主に用いられているフッ素を含むレベリン グ剤を天然由来のMEL-Bで代替することにより環境負荷を低減させる ことが期待できる。

MEL-Bをフイルムなどに塗布した場合,二重膜・ラメラ構造が表面で 選択的配向しているためにレベリング剤としての良好な性能がもたらさ れると推測しているが想像の域を出ていない(図3)。そこで表面構造を 解明する手段としてシンクロトロン光を用いた斜入射(GI: Grazing-Incidence)SAXS/WAXS法による構造解析をBL8S1にて実施した。

Fig.3 MEL添加のレベリング効果

実験条件および試料は図4に示した。滴下後からの時間ごとの代表的な小角散乱像及び想像される構造模式図を示した(図5-a)。60秒 後からout-of-plane方向にピークが現れ、150秒後には3次のピークまで確認できた。構造の繰り返し単位の大きさは3.2nmとなりこれは MEL-B単独で測定した場合の面間隔と一致した。図5-blこ1次のピークの積分強度を時間に対してプロットした結果を示した。積分強度 は180秒経過後は減少することが、ビームダメージにより構造が破壊されたと考えられる。このようにMEL-Bは溶媒の蒸発に伴い、短時 間で基材の表面に分子が自発的に整列し、基材に平行なラメラ構造が形成されることがわかった。このラメラ相が溶媒蒸散を均一化さ れるバリアの役目を果たしており平滑なコート面が形成されると考えている(図6)

まとめ・今後の予定

・GI-SAXS/WAXS法により素材表面での構造形成機構を動的に観察できるようになった。しかしシンクロトロン光によるダメージも大きく不活性ガス雰囲気下での測定や、測定中に照射位置を変えての測定などが必要であることもわかったので今後の課題としたい。 ・MELーBのレベリング性は基材表面に分子が自己配列しラメラ相を形成することで溶媒の蒸散が均一化されているものと考えられる。 スキンケア用化粧品原料として配合した場合の保湿効果、水分蒸発抑制効果、肌荒れ改善効果と同様のメカニズムと推定している。

2017.3.6

AichiSR