リチウムイオン電池スピネル型材料の理解

 佐藤吉宣^A,下西裕太^A,伊東真一^B,浅井英雄^B,清水皇^B,

 高井茂臣^C

 A 株式会社デンソー研究開発2部

 B 株式会社デンソー材料技術部

 C 京都大学大学院 エネルギー科学研究科

TOPIC1. Al置換したLiMn₂O₄の電子構造・電荷補償機構 TOPIC2. γ-Fe₂O₃に関する研究

2017.03.06 あいちシンクロトロン光センター成果発表会

AI置換したLiMn₂O₄の電子構造・電荷補償機構

- ・電子構造のアサイメント
- ・MnO₆_8面体の対称性の向上
- ・充放電時のO2p電子の
 電荷補償の増加
 が確認された。

2017.03.06 あいちシンクロトロン光センター成果発表会

弊社の研究事例

電子構造/電荷補償機構に着目したリチウムイオン電池正極の理解

5V級正極 LiNi_{0.5}Mn_{1.5}O₄の 電子構造理解^[1]

図.エネルギー可変UPSを用いた 価電子帯電子構造の測定結果

[1] あいちSR2015年度 成果報告書 [2] Y.Satou et al., Prime2016 @Hawaii

DENSO

5V級正極 LiNi_{0.5}Mn_{1.5}O₄の 電荷補償機構の理解^[2]

LiMn₂O₄正極の概要/課題

有望材料であるがその耐久性向上には未だ予知がある

LiMn₂O₄の特徴

- ・安定な資源量
- ・高い安全性
- ・耐久性に改善余地

[1] VESTAで描写, K. Momma and F. Izumi, "VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data," J. Appl. Crystallogr., 44, 1272-1276(2011).

元素置換による耐久性向上

⇒より良い置換元素・材料設計のために<u>耐久性向上メカニズム理解</u>は重要

DENSO

© DENSO CORPORATION All rights reserved.

本研究の目的

モデル正極 Al置換LMOを用い電子構造/電荷補償機構の変化を確認

AI置換に伴う電子構造/電荷補償機構の変化を確認する

価電子帯の電子構造把握

将来研究

電子構造/電荷補償機構変化の結果に基づき、

耐久性向上メカニズムを解明

本研究のコンセプト

エネルギー可変UPS / in-situ XAFSの適用

エネルギー可変UPS測定

カーブ^[2]

図. Mn3*d*・O2*p*軌道 電子イオン化断面積^[1]

[1] J.J. Yeh, Gordon and Breach Science Publishers, Langhorne, PE (USA), 1993

[2] S. Tsuda, T. KISS and S.SHIN, J. Vac. Soc. Jp., 51, 335, 2008

in-situ XAFS測定

図. in-situ XAFS 装置 模式図

© DENSO CORPORATION All rights reserved. This information is the exclusive property of DENSO CORPORATION. Without their consent, it may not be reproduced or given to third parties.

実験内容

エネルギー可変UPS測定

サンプル: LMO, LMAO Arボックス中で劈開

測定装置:あいちSR BL7U

測定条件:入射光エネルギー hv=35,38,53,120 eV

in-situ XAFS セル:2032コイン型ハーフセル (X線窓付) 正極:LMO(LMAO)/AB/PVDF = 80/10/10(wt.%) 測定レート/範囲:0.5C/3.5-4.35V 測定装置:あいちSR BL5S1 XAFS測定条件:Mn *K*-edge XAFS スキャン:ステップスキャン 80sec./scan 解析:Athena/Artemisを利用^[1] サンプル

 $LiMn_2O_4$, $LiMn_{1.92}Al_{0.08}O_4$

DENSO

Pelleted LiMn₂O₄ / LiMn_{1.92}Al_{0.08}O₄

Cleavage in Ar filled box

Measured XPS/UPS in Synchrotron

[1] Ravel B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537-541.

© DENSO CORPORATION All rights reserved.

エネルギー可変UPS測定結果

バンド/半導体特性のアサイメントおよびバンドの形状変化を把握

図.可変紫外光エネルギーによるUPS測定結果

[1] E. Iguchi, T. Tokuda, H. Nakatsugawa, and F. Munakata, Journal of Applied Physics, 91(2002)

[2] S. Shi,D. Wang, S. Meng, L. Chen, and X. Huang, Physical Review B, 115130(2003)

DENSO

6/10

in-situ Mn K-edge XAFS測定結果

AI置換による対称性の変化 および 電荷補償機構を把握

図. 充電中ののFT-EXAFS動径分布

Mn-OのFEFFフィッティング(SOC=0%)※

	Number of Short+long bonding (Mn-O)	r-short	r-long	average r	σ^2	
LMAO	6+0	1.920	-	1.920	0.004	
LMO	5+1	1.890	2.080	1.921	0.004	※解析中

XANES

LMAO ピークトップ エネルギー値 変化小 プレエッジ強度 変化率^[1] 小

図. 充電中のMn K-edge XANESパターン

[1] Deb, A.; Bergmann, U.; Cramer, U.P.; Cairns, E.J. *J. App. Phys.* **2006**, *99*, 063701.

MnO6_8面体の対称性確認	解析結果はAI添加による対称性の増加を示唆 →UDS結果を支持			
電荷補償機構の把握	AI添加によりMnの価数/ノレエッシ強度の変化率減少			
	\Rightarrow 電荷補償には E_F 直下の特定の酸素電子が寄与			

DENSO

© DENSO CORPORATION All rights reserved.

DENSO

LMAOは e_q -O_{2p}混成が強い電子構造をとり特定の酸素からの電荷補償が増大

AI置換による電子構造および電荷補償機構の変化

E_F直下の軌道混成(Mn³⁺e_q-O2p)が小

E_F直下の軌道混成(Mn³⁺e_g-O2p)が増加

This information is the exclusive property of DENSO CORPORATION. Without their consent, it may not be reproduced or given to third parties

© DENSO CORPORATION All rights reserved.

LMAOは e_q -O_{2p}混成が強い電子構造をとり特定の酸素からの電荷補償が増大

AI置換による電子構造および電荷補償機構の変化

DENSO

© DENSO CORPORATION All rights reserved.

モデル正極 AI置換LMOを用い電子構造/電荷補償機構の変化を確認

- 先行研究通りのバンド構造・半導体
 n型特性のアサインに成功。
- LMAOはLMOに対し対称性の高い MnO6_8面体を含むことを確認。
- LMAOはO2p電子の電荷補償への 寄与が大きいことを確認。

電子構造変化の観点から、耐久性向上メカニズムの解明

γ-Fe₂O₃に関する研究

-概要-Li挿入停止後のγ-Fe₂O₃の 緩和過程をXAFSにて押さえた。 その結果、 XANES領域/EXAFS領域 のスペクトルから緩和現象を 示唆するデータを得た。

2017.03.06 あいちシンクロトロン光センター成果発表会

Li挿入後, 電池を開回路にして測定したOCVの時間変化

Li挿入後のγ-Fe₂O₃の格子定数の変化

S. Park, M. Oda, T. Yao, Solid State Ionics, 203, 29 (2011).

Li挿入後のγ-Fe₂O₃のFeサイト占有率変化

Time after Li Insertion / hour

© DENSO CORPORATION All rights reserved.

γ-Fe₂O₃のLi挿入後の緩和モデル

Liは8eサイトのFeを16cサイト に押し出して挿入 16cサイトに押し出されたFeは 再び最安定な8eサイトに戻る

実験

- 電気化学的Li挿入
 - 作用極 γ-Fe₂O₃ + AB + PVdF (= 80: 10: 10) AI箔に塗布
 - 対極 金属リチウム
 - 電解液 1M LiPF₆ (EC:DMC = 2:1)
 - 定電流 0.01 Ag⁻¹

wer Body

Ar置換グローブ

) XAFS測定

あいちSR BL5S1

X線エネルギー: 6800 ~ 8200 eV, Fe foilで校正

測定: 20 min

ビームサイズ 8 mm x 0.5 mm

Li挿入γ-Fe₂O₃のXANES領域

解析にはAthen・Artemisiを利用 Ravel B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537-541.

Li挿入γ-Fe₂O₃のプレエッジ近傍

Li挿入γ-Fe₂O₃の動径分布関数

解析にはAthen・Artemisiを利用 Ravel B.; Newville, M. J. Synchrotron Rad. 2005, 12, 537-541.

DENSO

© DENSO CORPORATION All rights reserved. This information is the exclusive property of DENSO CORPORATION. Without their consent, it may not be reproduced or given to third parties.