
1/28

2017

X

2017 3 7



1.

2.

1 XAFS Li
2 X img.

3.

2/28



IEA/ ETP Energy Technology Perspectives 2012

HV PHV

3/28



4/28



10 100 1000 10000

10

20

1010
15

1
1000

2000

4000

6000

8000

10000

0

4

6

W
/

Wh/

HV PHV EV FCV

5/28



xLi+ + xe- + CoO2 LixCoO2 LixC C + xLi+ + xe-

6/28



LIB

7/28



Li

Li

Li

/ 
Li

Li

LiSOC0%

SOC100%

SOC State of charge

8/28



Ei

Ei

Ee

Ee
SEM

5 15um Li

Ee
Ei

Ee Ei

100um

1um XAFS

Li

9/28



LiCoO2 LCO 12.5um
PVdF
Li

1M LiPF6 EC/EMC
100um 30um

LCO

Li

10/28



2
5C 4.5V DMC

XAFS
SPring-8 BL37XU

0.8um 1.3um KB
SDD

IC

11/28



7700 7710 7720 7730 7740
Energy / eV

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

u. Lix X=1

Lix X=0.44

Co-K XANES

7713 7714 7715 7716 7717 7718
Energy / eV

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

u.

7715eV
Li
Li

Li

Lix X=1

LCO

SPring-8 BL14B2

Lix X=0.44

XAFS

XAFS LCO

12/28



Co- X

20um

25um
X

100um

13/28



7713 7714 7715 7716 7717 7718 771
Energy / eV

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

u.

Al

Co- X
Co-K XANES

Li

Li

Li

7700 7710 7720 7730 7740 7750
Energy / eV

N
or

m
al

iz
ed

 In
te

ns
ity

 / 
a.

u.

XAFS

14/28



Al

Co- X Li

X=1 X=0.7 X=0.4

Li

0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

LixCoO2 / x
 / 

um Li =0.35

Li

15/28



surface
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Fig. 6: SEM image of cross-section sample

Al current
collector 20 m

Li-ion distribution

LCO

0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

D
is

ta
nc

e 
fro

m
 A

l c
ur

re
nt

 c
ol

le
ct

or
(

m
)

LiXCoO2 (X)

LiX

surface

inside

Fig. 7: Li-ion distribution

Key Findings
An electrode was measured from the surface to inside by u-XAFS method.
Li-ion conc. was estimated from the valence state of Co by XANES edge energy.
Li-ion are extracted preferentially from the electrode surface. 
(The delithiation does not proceed at the inside of the electrode.)

Cross-section Li-ion distribution in LCO
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cathode

anode

dischargecharge

Fig. 8: Distribution of Li-salt concentration in electrolyte 

separator

Main Logic
The Li-ion distribution in the electrode” causes 
“Li-salt distribution in the electrolyte” in the electrode and separator. 

During Charging
(a) Positive Electrode

Li-salt conc. increases due to Li-ion extraction from LCO.
Li-salt conc. is higher at the electrode surface.
(because Li-ion extraction preferentially proceeds at the surface)

(b) Negative electrode
Li-salt conc. decreases due to the insertion of Li-ion into the electrode.
Li-salt conc. is expected to be lower at the electrode surface. 
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Sample
X-ray tomography of cross-section of the cell discharge

Cathode
No X-ray transmission

Separator  & Anode
Transmission strength

depend on Li-ion conc. 

Incident X-rays

Fig. 9: in-situ X-ray imaging method

2D detector

The purpose is to visualize distribution of Li-salt conc. in an electrolyte

We measured the Li-salt distribution of the separator and negative electrode.
(Positive electrode is too heavy for the X-ray transmission.)

It is hypothesized that absorption by P and F in Li-salt (LiPF6)  causes uneven 
distribution of the levels of the X-ray transmission intensity in the electrolyte. 
Thus, the X-ray tomography reflects the concentration variation of Li-salt in the 
electrolyte.   

in-situ X-ray imaging method
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< Front view > < Side view >

The cell was attached to a fastening plate and was cut to 5 mm in thickness.

The cell was fixed to the imaging mode cell and the electrolyte was injected 
to the cell under an Ar-gas atmosphere. 

cell case

in-situ X-ray imaging model cell
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model cell ( upstream side ) model cell ( downstream side )

in-situ X-ray imaging model cell
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Fig. 11: Charge – discharge profile at 1C CC rate

The cell showed desirable functionality.
The cell functioned normally in the imaging model cell.
The model cell functioned stably for approximately three days.
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X-ray size 1 mm 1 mm
Detection method 2D detector (CMOS)
Space resolution 1 m
Time resolution 500 ms
in-situ imaging measurements at 
BL33XU:TOYOTA BL (SPring-8, JAPAN)

incident X-rays
(10 20 keV)

attenuator transparent 
detector

(IC) cell

2D detector
(CMOS)

in-situ X-ray imaging setups ( TOYOTA BL )
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X-ray transmission image of cross-section electrodes
Al current collector

separator

anode

Cu current collector

Our hypothesis was verified;
The electrodes, separator, and their interfaces are clearly recognized.

The image of the positive electrode became dark because X-rays did not 
penetrate though it.

X-ray transmission image
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(a) X-ray image before discharge

(b) X-ray image after 15 s CC discharge

(c) Intensity (before the discharge) - Intensity (after 
discharge) (b)-(a)
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<transmission intensity>
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<Li-salt conc. in electrolyte>

low

high

The degree of X-ray transmission intensity of various conditions was obtained 
by subtracting the intensity degree of the initial state from that after 15 seconds.

The larger intensity (light color) means low Li-salt concentration.

The lower intensity (dark color) means high Li-salt concentration.

Experimental data analysis method
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Relative X-ray transmission profile during 5C CC discharging and charging
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The charging process showed the opposite results to the discharging process.

The ionic resistance in the composite electrode is the primary factor to generate 
the Li-salt distribution in the negative electrode; Because the (de)lithiation reaction 
preferentially proceed from the surface, more Li-salts exist at the surface.

The different levels of Li-salt conc. between the positive and negative electrode 
create the uneven distribution of Li-salt in the separator. 

before charge
15s after charge
30s after charge

Li-salt concentration distribution 5C
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Relative X-ray transmission profile during 1C CC discharging and charging

The Li-salt concentration distribution is lower in 1C CC charge/discharge 
than in 5C CC.

At lower C rates, the Li-salt distribution is well released during the 
charge/discharge process.  
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