文部科学省先端研究基盤共用・プラットフォーム形成事業 「あいちシンクロトロン光センター成果発表会」 2016/03/09 ミッドランドホール

放射光X線吸収および光電子分光を用いた ステンレス鋼不動態被膜の構造解析

株式会社デンソー ○浅井 英雄, 伊東 真一, 清水 皇

ステンレス鋼材料:その用途は多岐にわたる

<u>調理器具</u>

- ・耐腐食性
- ・加工性・耐久性
- ・耐摩耗性...

輸送機器

<u>実験・医療機器</u>

耐腐食性の鍵①:金属表面の不動態化

<u>不動態化 @単体金属表面 = 金属酸化物の生成</u>

M.J.N. Pourbaix, 1945. PhD Thesis. TU Delft, Delft University of Technology.

	ΔH_f / kJmol ⁻¹
FeCr ₂ O ₄	-1453.6
Cr ₂ O ₃	-1139.7
Fe ₂ O ₃	-824.2
Fe ₃ O ₄	-1118.4

【化学的安定性】

FeCr₂O₄ (スピネル酸化物) > Cr酸化物 > Fe酸化物

- ·化学便覧 基礎編 改訂5版, 丸善(2004).
- C. Qiyuan et al., Geochimica et cosmochimica acta 60 (1996) 1.
- S.L. Philips *et al.*, "Thermodynamic tables for nuclear waste isolation: Vol. 1, Aqueous solutions database." Berkeley, CA, USA (1988).

従来モデル: SUS304自然不動態被膜

<u>元素成分比 (x, mol%)</u>

SUS304表面 自然不動態被膜

▶ Cr含有比: 20 mol%以上 = 非晶質主体の領域 高耐食性発現

➤ 金属酸化物と水酸化物の複合被膜と考えられている (詳細構造は未解明)

X線吸収微細構造 (XAFS) および放射光X線光電子 分光 (SR-XPS) によって、SUS304ステンレス鋼 表面に形成される自然不動態被膜の詳細構造を明ら かにする。

<u>サンプル</u>

- ▶ 鏡面研磨したSUS304多結晶基板を アセトン溶媒中で超音波洗浄し、自 然不動態被膜から最表層の有機成分 のみを選択除去。
- XPS: 清浄化後すぐにUHV-chamber
 にインストール
- XAFS: 清浄化後すぐにHe-chamber
 にインストール

<u>あいちSR BL7U (軟X線高分解能XPS)</u>

- MBS A-1 (MB scientific)
- \cdot hv = 650, 800 eV
- $\cdot E/\Delta E = \sim 5000$
- Total resolution <0.2 eV
- P < 1x10⁻⁸ Pa

<u>あいちSR BL5S1 (転換電子収量XAFS)</u>

検出深さ (d) = Auger電子のIMFP (Cr-K端:d < 10 nm)

<u>あいちSR BL6N1 (硬X線光電子分光)</u>

- Phibos150 (SPECS GmbH)
- hv = 3000 eV
- Total resolution <2.0 eV
- P < 1x10⁻⁷ Pa

Outline

① 転換電子収量 (CEY) XAFS測定結果

・XANES: 不動態被膜中にCr(IV)種を観測 (NEW)

・EXAFS: 不動態被膜中のネットワーク構造の観測 (NEW)

② 放射光 (SR) XPS測定結果

- ・不動態被膜成分の同定
- ・不動態被膜成分の深さ分布

③ (Discussion) SUS304表面における 自然不動態被膜の新規構造モデル

Cr-K XANES: 不動態被膜中のCr成分

<u> Cr-Kedge XAFSスペクトル</u>

 バルク金属Crの電子状態が支配的 転換電子収量法でも最表層のみの 電子状態観測は不可

<u> 差スペクトル (SUS304 – Cr⁰ foil)</u>

- 正のピーク = 不動態被膜成分の電子状態
- 5990-5992 eV = Cr(IV) pre-edge
- 6014 eV = Cr(IV) main peak
- 6024 eV = 6配位 (O_h) peak

【不動態被膜成分】 [主成分] 6配位(O_h)-Cr(IV)化合物 [副成分] 6配位(O_h)-Cr(II), Cr(III)化合物

*K.L. Fujdala *et al.*, J. Catal. 218 (2003) 123. [‡]Y.G. Choi *et al.*, Chem. Phys. Lett. 329 (2000) 370.

EXAFS: 不動態被膜中のネットワーク構造

Cr-K edge FT-EXAFS of SUS304

EXAFS: 不動態被膜中のネットワーク構造

<u>FEFFシミュレーション 初期条件</u>

	Space group	Lattice Const. [Å]	Angle [°]
不動態被膜 (Rutile CrO ₂ (IV))	P42/mnm	a = b = 4.421 c = 2.917	90
SUS304	lm3m	2.286	90

<u>FEFFシミュレーション 結果</u>

Scattering Path (single scatter)	Atomic distance [Å]		
	CrO ₂	不動態被膜	
第1配位 (O)	1.88	1.91 (+1.6%)	
第2配位 (O)	1.92	1.95 (+1.6%)	
第1近接 (Cr)	2.92	2.95 (+1.0%)	
第3配位 (O)	3.37	3.40 (+0.9%)	

<u>不動態被膜中ネットワーク構造</u>

CrO₂(IV)様化合物 (<1.6% 格子の膨張)

Outline

① 転換電子収量 (CEY) XAFS測定結果

- ・XANES: 不動態被膜中にCr(IV)種を観測 (NEW)
- ・EXAFS: 不動態被膜中のネットワーク構造の観測 (NEW)
- ② 放射光 (SR) XPS測定結果
 - ・不動態被膜成分の同定
 - ・不動態被膜成分の深さ分布
- ③ (Discussion) SUS304表面における 自然不動態被膜の新規構造モデル

SR-XPS: 不動態被膜成分の同定

*I. Ikemoto et al., Solid State Chem. 17 (1976) 425.

SR-XPS: 不動態被膜成分の深さ分布

② SR-XPS: 不動態被膜中の金属酸化物種

SUS

(= Cr濃化が生じやすい)

SUS304表面における自然不動態被膜の構造

[被膜全体] O_h-Cr(IV)OHOネットワーク + [表面<界面] Cr酸化物種

まとめ

SUS304の自然酸化不動態被膜は、不動態被膜/金属界面から被膜最 表層にわたる一様なCrOHOネットワーク構造と、ネットワーク中に分 散する (Cr-rich) 酸化物種から構成される。 CrOHOネットワーク構造において、Crイオンは6配位・4価の状態で 存在する事が本研究で初めて明らかになった。

本研究における放射光測定におきましては、あいちシンクロトロン光 センターの下記職員の皆様に大変お世話になりました。 心より感謝申し上げます。

渡辺義夫様、吉村倫拓様、杉山陽栄様、野崎彰子様 BL5S1 森本浩行様、廣友稔樹様 BL5S2 中西裕紀様、佐久間靖博様 BL6N 村井崇章様、陰地宏様 BL7U 仲武昌史様 その他皆様