あいちシンクロトロン光センター成果発表会 2016年 3月 9日 (於 ミッドランドホール)

アトム窒化処理を施した鋼表面の状態分析

豊田工業大学特任教授 原 民夫

窒化処理と複合硬化処理

工具

研究の目的

ものづくり産業では生産コスト低減及び生産効率向上を 目指して、表面改質技術による工具金型の使用寿命の 延長が望まれている。

アトム窒化処理を利用して、工具・金型を大気 に曝すことなく硬質膜コーティングを連続処理 できる理想的な複合硬化処理装置を開発する。

高濃度の窒素原子雰囲気の中で行う窒化

アトム窒化後の試料表面

材質:SKD61

化合物層を形成しない条件(c)で窒化処理した試料は光沢を保っている。

<u>アトム窒化の特徴</u>

◎ 化合物層を形成しない。

- ◎ 高アスペクト比の狭いスリットや孔の内面 の窒化が可能である。
- ◎ 鋭い刃先の窒化処理が可能である。

臨界剥離荷重の評価(1)

10 (mm)

0 120

臨界剥離荷重の評価(2)

アトム窒化あり TiN薄膜 アトム窒化層 基材: SKD61 $AE(\%)Pd(\mu m)$

load

複合硬化処理による臨界剥離荷重の向上

複合硬化処理の実施例

工具	SKH51 Φ7.26, L80	先端部 中7.26
被加工物	S55C t2.6板材を別工程で絞り、t4程度となった所を 本工具にて打抜き	

エ具(SKH51、パンチ用)の窒化 使用寿命の評価

アトム窒化+TiCN 処理を施すと寿命が通常の5倍に延びる

試料及び試験条件

<u>試験目的</u>: アトム窒化についてのMSE評価。

■ <u>試料</u>:

試作	窒化未処理	ፖ トムー1 ፖ トムー2		
被膜	_	窒化処理		
成膜条件	—	500 、 5hr	450 、 5hr	
ビッカース硬さHv	_	1000(荷重:1kg)、 1157(荷重:50g)	1288(荷重:25g)	
全膜厚	70µm程度			
基材	SKD61			

<u>サンプルの写真 :</u>

■ 試験方法:

<u>試験条件</u>

1/1摩耗力 SK85HRC20の摩耗率 = 0.96±10%μm/gに設定 試験回数 N=1回 *(参考:比較としてプラズマ窒化の計測データ を追加記入)*

<u>テスト装置・装</u>	<u> </u>	■ <u>評価</u> 権	<u> 幾器•測定条件:</u>
使用機種	MSE-A	使用機種	白色光干涉法
粒子	球形ジルコニア D50 =10-30µm		表面形状測定機 SP-500
スラリー濃度	3wt%		(東レエンシニアリンク社製)
分散剤濃度	0.2wt%	レンズ	対物5倍
ノズルサイズ	□1mm	走査速度	7.2um/sec
		測定レンジ	-5~+45um
		水平分解能	1.28 × 1.28um/pix

報告書No.00268-01

マイクロスラリーエロージョン(MSE)試験結果 (深さ40µmまで)

投射粒子量を10gピッチで試験した結果です。深さは40µmまでとしました。

摩耗率グラフ下部に参考ビッカース硬さを表示

15µm以降に徐々に弱くなり焼き入れ硬さに収束する層がある。 報告書No.00268-01

2013年9月26日

マイクロスラリーエロージョン(MSE)試験結果 (最表面2µm以下)

投射粒子量を1gピッチと分解能を上げた試験

・その後200nm過ぎた深さまで急速に下がり900Hvになり安定した硬さになっている。

2013年9月26日

報告書No.00268-01

各種窒化処理した鋼表面のX線結晶構造解析

(目的) アトム窒化およびイオン窒化処理した鋼表面の 結晶に形成された物質を評価する。 検出器 (方法) 窒化処理した鋼表面に シンクロトロン光を入射 **SR光** 回折光 =1.35A) 角度0.075。~10。で入 射させ、表面の結晶構造 解析を行う。 サンプル

未処理サンプルのXRD解析

アトム窒化サンプルのXRDスペクトル (あいちシンクロトロン光を使用)

アトム窒化サンプルのピークシフト

測定位置	2	D値	
表面~0.18µm	38.34	1.992	-0.026/1.966
表面~0.36µm	38.38	1.989	-0.023/1.966
表面~0.96 µ m	38.49	1.984	-0.018/1.966
表面~1.5 µ m	38.49	1.984	-0.018/1.966
表面~10.1 µ m	38.49	1.984	-0.018/1.966

08	09	70 20 (der	0	12 13
測定位置		2	D値	
表面~0.18	μm	70.00	1.140	-0.008/1.132
表面~0.36	μm	70.12	1.138	-0.006/1.132
表面~0.96	μm	70.32	1.136	-0.004/1.132
表面~1.5 μ	ım	70.24	1.137	-0.005/1.132
表面~10.1	μm	70.32	1.136	-0.004/1.132

各種窒化処理鋼のXRD測定結果

- (1)未処理材、アトム窒化材、イオン窒化材のすべてのXRDスペクトルには、 鉄の3本のピークが観察されるが、特に、未処理材とアトム窒化材のピークは広角側に少しシフトしていた。
- (2)アトム窒化材には 鉄以外に鉄クロム(-CrFe)の化 合物が観察された。
- (3)アトム窒化材の表面から0.96µmまでは、未処理材と 比べると圧縮応力が負荷されている。
- (4) イオン窒化材には 鉄以外に鉄の窒化物(Fe_2N)
 - Fe₈N)による比較的大きなピークが観察された。

開発した複合硬化処理装置の構造

<u>複合硬化処理を行ったタップの写真</u>

複合硬化処理: アトム窒化処理(5時間) + イオンプレーティング(0.5時間)