

XAFS測定によるジオポリマーに含まれるCuの局所構造解析

橋本 忍¹・武田はやみ¹・町野達也¹・村松拓人¹・本多沢御¹・岩本雄二¹・稲吉辰夫²・鈴木一正² ¹名古屋工業大学環境材料工学科 ²高浜工業株式会社

背景·経緯

ジオポリマーの反応機構は地殻中の岩石の生成機構と類似しているため、天然鉱物のように安定した発色を持つジオポリマー硬化体の作製も可能と推測される。本研究では、原料に各種の銅化合物を添加したジオポリマー硬化体を作製し、シンクロトロン光を用いて硬化体中の銅の局所構造を分析し、天然の銅 含有非晶質鉱物であるクリソコラと比較した。

期待される効果・社会的インパクト

原料に銅化合物であるCuO, Cu₂O, Cu(OH)₂を添加してジオポリマーを作製した場合、硬化体中にそれぞれの化合物が残存した。CuCO₃・Cu(OH)₂・H₂O, CuCl₂・ 2H₂O, CuSO₄・5H₂Oを添加して作製した場合は、高アルカリ環境下でこれらの化合物は分解し、非晶質化した。この場合には、銅原子は分子レベルでジオポリ マー構造中に取り込まれていることが示唆され、XAFSによって局所構造を解析したところ、ジオポリマー中の銅の存在状態が天然鉱物クリソコラ中の銅のそれと 類似していることが推測された。⇒意匠性ゼオポリマーの作製に成功 ⇒普及に期待。 Takeda, Hashimoto et al, *Ceam. Int.* 40 (2014) 6503-6507.