Athena の便利な機能

Athena には XAFS スペクトルを読み込んで表示するだけでなく、データ処理や解析に役立つ様々な機能があ ります。本資料では、ユーザからの質問が多いものやスタッフが便利だと思った機能について使い方を解説しま す。また補足として小ネタやトラブルシューティングについても掲載します。

目次(項目をクリックすると、そのページにジャンプします。)

便利な機能

データの並び順を変更する方法	2
複数データを足し合わせる方法	2
<u>データの選択時に役立つ操作方法</u>	3
設定パラメータを統一する方法	4
<u>視覚的にパラメータを設定する方法</u>	7
<u>Glitch を除去する方法</u>	
測定データのエネルギー範囲をトリミングする方法	
<u>Athena</u> 上で測定データを整列する方法	
未知スペクトルを線形結合フィッティングにより解析する方法	
スペクトルを積み上げ形式で表示する方法	
データを様々な形式でセーブする方法	
小ネタ	
特定のデータを選択してチェックを付け外しする方法	
<u>E0</u> の様々な設定方法	
スペクトル上でホワイトライン位置を調べる方法	
トラブルシューティング	
EXAFS 解析が非アクティブになっている時の対処方法	
<u>EXAFS</u> 振動の抽出が上手くいっていない時の対処方法	
<u>蛍光法データを読み込んだ際にスペクトルが歪んでいる時の対処法</u>	

データの並び順を変更する方法

Athena [XAS data processing]画面の右欄で、並び替えたいデータをクリックする(データ名が青色の枠で囲まれる)。 (1) 行いたい操作に応じて以下のキーボードを押す。

並び順を一つ上にする →	Alt + k		
並び順を一つ下にする →	Alt + j		
Data01.dat Data02.dat Data02.dat Data03.dat Data04.dat Data05.dat			Data02.dat Data01.dat Data03.dat Data03.dat Data04.dat Data05.dat
		Alt + j	
		\longrightarrow	
	10 10 1		
E k	R q kq		E k R q kq

複数データを足し合わせる方法

(1) Athena [XAS data processing] 画面の右欄で、足し合わせたい全てのデータのチェックボックスにチェックを入れる。

(2) 最上段のメニュー欄で「Merge」→「Merge $\mu(E)$ 」を押す。

(Merge μ(E) は 生データを足し合わせる、 Merge norm(E) は 規格化した後のデータを足し合わせる、という操作をそれぞれ意味する。もしも、規格化の操作をする前にスペクトルの S/N を良くする、という目的でデータの 足し合わせを行うならば、Merge μ(E) が適切である。)

[W] Athena [XAS data processing]								—	×
File Group Energy Mark Plot Freeze	Merge	Monitor	Help						
Merge µ(E) Shift+	Ctrl+m		[Save	A U	T	🗹 Data01.dat		
Merge norm(E) Shift-	Ctrl+n		L	_			☑ Data02.dat		
Manage (I)	0.1					~	🗹 Data03.dat		
Merge X(k) Shift-	-Utri+c		Detetano				🗹 Data04.dat		
Weight by importance			Datatype.	. XIIIU	L Fr	reeze	🗹 Data05.dat		
Weight by a size is sold		e-170921_0	ù-foil-C	XAFS-12	20s-f.dat				
weight by holse in $\chi(k)$						_			
Weight by μ(E) edge step		ergy shift	0	Importar	nce 1				
Document section: merging data		otore							
		leters	-	-	-				
E0 8978.023	Nor	malization	order 🔘)1 ()2	• 3				
Ν	/lerge µ	ι(E)によ	るデ	ータの	の足して	合わ	せ		

* <untitl< th=""><th>ed> Save</th><th>A U I</th><th>🗹 Data01.dat</th></untitl<>	ed> Save	A U I	🗹 Data01.dat
			🗹 Data02.dat
Main wind	ow	\sim	🗹 Data03.dat
			🗹 Data04.dat
Current g	roup: merge Datatype: xmu	🗌 Freeze	🗹 Data05.dat
File	Merge of Data01.dat, Data02.dat, Data03.dat, Data04.dat, Data05.dat		🗹 merge

Merge µ(E)の結果

データの選択時に役立つ操作方法

データ選択ウィンドウの近くに、【A】【U】【I】の3つのボタンがあります。A は「All」、U は「Unselect」、I は「Inverse」の略で、それぞれデータ選択に役立つ機能があります。

() <i>F</i>	Athena [X	AS data I	processi	ng]											\times
File	Group	Energy	Mark	Plot	Freeze	Merge	Monitor	Help					-		
* <	untitled	d>							Save	A	U	I.	data1		
Mair	n window	v										~	data2		
Curr	ent gro	up: dat	a5					Datatype	e: xmu		Fre	eze	data4		
				200 B 200 C 200								_			

(1) 【A】を押すと、全てのデータが選択される。

(1 <u></u>)	×		3 <u></u> 3	1
		✓ data1 ✓ data2 ✓ data3 ✓ data4		

(2) 【U】を押すと、全てのデータの選択が外れる。

(3) 【I】を押すと、選択しているデータが入れ替わる。

設定パラメータを統一する方法

Athena では規格化やバックグラウンド処理など様々なパラメータを設定しますが、それらのパラメータを簡単な 操作で統一することができます。なお、Athena ではデータボックス内の全データのことを「all groups」、チェッ クが入ったデータのことを「marked groups」と呼んで区別しています。

特定のパラメータのみを統一する方法(例として E0 を示す)

(1) 各項目のところにマウスカーソルを合わせて右クリックするとウィンドウが現れる。

🛐 Athena [XAS data processing]				_		\times
File Group Energy Mark Plot Freeze Merge Monito	r Help					
* <untitled></untitled>	Save A U I		.01 .02			
Main window	~		03			
Current group: DATA01	Datatype: xmu Freeze					
File C:¥Users¥K_TAKAHAMA(NUSR)¥Desktop¥Cu.prj, 1						
Flement 29: Copper \checkmark Edge K \checkmark Energy shift	t 0 Importance 1					
Normalization and background removal parameters						
Normalization	2. order ○1 ○2 ●3					
Set all groups to this value of E0	normalized data					
Set marked groups to this value of E0						
Set E0 to its default value	1.5255549					
Set E0 to Ifeffit's default	e clamos					
Set E0 to the tabulated value						
Set E0 to a fraction of the edge step	None V					
Set E0 to the zero crossing of the second derivative) Strong 🗸					
Set E0 to the peak of the white line	ormalization	E	k	R	q	kq
1	CONTRACTOR STOCK				_	

(2) Set all groups to this value of E0 を選ぶと、データボックス内の全データの E0 の値がすべて統一される。

Nor	malization and background removal parameters		
EC	AATT AFT Normalization	<u>ordor</u> ○ 1 ○ 2 ● 3	
-	Set all groups to this value of E0		
Pi	Set marked groups to this value of E0	hormalized data	
N	Set E0 to its default value	1.5255549 fix	
RI	Set E0 to Ifeffit's default	clamps	
T.	Set E0 to the tabulated value		
S¢	Set E0 to a fraction of the edge step	None ~	
S¢	Set E0 to the zero crossing of the second derivative	Strong 🗸	
St	Set E0 to the peak of the white line	rmalization E k R q kq	1

(3) Set marked groups to this value of E0 を選ぶと、データボックス内のチェックが入ったデータの E0 の値が すべて統一される。

K

Norr	nalization and background removal parameters						
E	Set all groups to this value of E0	order ○1 ○2 ●3					
P	Set marked groups to this value of E0	normalized data					
N	Set E0 to its default value	1.5255549					
R	Set E0 to Ifeffit's default	e clamps					
c.	Set E0 to the tabulated value	None v					
2	Set E0 to a fraction of the edge step						
SI	Set E0 to the zero crossing of the second derivative	Strong ~					
St	Set E0 to the peak of the white line	ormalization	E	k	R	q	kq

全てのパラメータを統一する方法

(1) データボックス内のデータを選んで右クリックするとウィンドウが現れる

		— (\times		
Help						
Save A U I	DATA01	Rename cur Copy curren Change data	rent gr it grou a type	oup p		Shift+Ctrl+l Shift+Ctrl+y
0 Importance 1		Set all group Set marked	os' valu groups	ues to th s' values	e current to the current	
order 0 1 0 2 • 3		About curre Show yaml f Show the te	nt grou for curr xt of th	up rent gro ne curre	up nt qroup's data file	
ten normalized data		Show measu	iremen	nt uncer	tainties	>
:ep 1.5255549 fix		Remove cur Remove ma	rent gr rked gr	oup oups		
oline clamps		Close				Ctrl+w

(2) Set all groups value to the current を選ぶと、データボックス内の全データの設定値がすべて現在選択されてい るデータの値に統一される。

DATA01	Rename current group Copy current group Change data type	Shift+Ctrl+I Shift+Ctrl+y
	Set all groups' values to the current	K
	Set marked groups' values to the current	

(3) Set marked groups value to the current を選ぶと、データボックス内のチェックが入ったデータの設定値がすべ

DATA01				
DATA02	Rename current group	Shift+Ctrl+l		
DATA03	Copy current group Change data type	Shift+Ctrl+y		
	Set all groups' values to the current			
	Set marked groups' values to the current			
	5	R		

て現在選択されているデータの値に統一される。

視覚的にパラメータを設定する方法

Athena ではテキストボックスに直接数値を入力する以外にも、テキストボックスの横にある〇ボタンを押してグラフをクリックすることによってと視覚的にパラメータを設定することができます。

(1) 設定したいパラメータの横にある〇ボタンを押す。

💽 Athena [XAS data processing]	—	\times
File Group Energy Mark Plot Freeze Merge Monitor Help		
Save A U I ☑ DATA01		
Main window V DATA02		
Current group: DATA01 Detatype: xmu Freeze		
File C:¥Users¥K_TAKAHAMA(NUSR)¥Desktop¥Cu.prj, 1		
Flement 29: Copper \sim Edge K \sim Energy shift 0 Importance 1		
Normalization and background removal parameters		
E0 8977.967 Normalization order () 1 () 2 () 3		
Pre-edge range -150.000 in to -30.000 in Flatten normalized data		
Normalization range 150.000 0 to 1005.803 0 Edge step 1.5255549 fix		

(2) グラフ上で設定したいところをダブルクリックする。

(3) テキストボックスにグラフ上でクリックした値が反映される。

Normalization and background removal parameters									
E0 8978.120	\odot	Normalization order 🔾 1 🛛 2 💿 3							
Pre-edge range	-150.000	o to o └ Flatten normalized data							
Normalization ran	ge 150.000	O to 1005.803 O Edge step 1.5264228 ☐ fix							

Glitch を除去する方法

Deglitch

分光結晶の同時反射や多重反射が原因で IO シグナル中にスパイク状の構造が現れることがあり、これを glitch と呼び ます。通常は IO に glitch があっても割り切れるため XAFS スペクトルに不連続は生じませんが、サンプルの状態や測 定条件等によって下図のような異常点が見られることがあります。この異常点は多くても数点であるのでフーリエ変 換後のデータにもほとんど影響を与えませんが、Athena では、deglitch(異常点除去)することができます。

Ti-foil glitch before in energy

(1) 「Main Window」から、Deglitch and truncate data を選択する。

🕅 Athena [XAS data processing]	_	\times
File Group Energy Mark Plot Freeze Merge Monitor Help		
<untitled> Save A U I I I I-foil_glitch_be</untitled>	fore	
Deglitch and truncate data \checkmark		
Deglitch a single point		
Plot as (a) $\mu(E) \bigcirc \chi(E)$ Choose a point Remove point Replot		
Deglitch many points		
Margin: 0.0931578 Emin: 150.000 O Emax: 1001.222 O		
Replot margins Remove points		

(3) グラフ上の異常点の所にマウスカーソルを合わせてダブルクリックする。

	Athena [X	AS data p	processi	ng]								-		×
File	Group	Energy	Mark	Plot	Freeze	Merge	Monitor	Help						
* at	hena								Save	A U I		Ti-foil_glitch_before		
	itch and •glitch a s Plot as Φμ(Ε) (truncate single poir Ο χ(Ε)	data ht Cho	iose a p	point	Re	move point	K	Rep	plot	-			

(5) 異常点が除去されていることがわかる。

測定データのエネルギー範囲をトリミングする方法

Truncate Data

測定範囲に複数の元素の吸収端が混じっているようなスペクトルが測定されたときは、解析したい吸収端だけに 注目して解析が出来るようにエネルギー範囲をトリミングすることができます。ここでは、Ni と Cu の吸収端が 含まれているデータを例にして説明します。

(1) リストから「Deglitch and truncate data」を選択する。

<untitled></untitled>	Save A U I
Main window	~
Main window Calibrate data Align data Rebin data	
Deglitch and truncate data	
Smooth data Convolute and add noise to data Deconvolute data Self-absorption correction Multi-electron excitation removal Copy series Data summation	

(2) エネルギーの値を入力し、「Truncate data」をクリックすると処理が行われる。Drop points を before にすると 入力したエネルギーより低エネルギー側が、after にすると高エネルギー側がトリミングされる。「Truncate marked」をクリックすると、チェックしたものが一括でトリミングされる。

<untitled></untitled>	Save A U I Sample
Deglitch and truncate data	~
Deglitch a single point Plot as (Replot
Deglitch many points Margin: 0.0288884 Emin: 150.000 © Emax: 1654.057	
Truncate data	e points
Drop points O before (after 8933.40	0
Replot Truncate data	Truncate marked E k R q kq

トリミング前

トリミング後

Athena 上で測定データを整列する方法

ビームラインではパルスモーターを使って二結晶分光器の角度を変化させることでX線を単色化しています。そのため、熱や機械的な要因で角度にズレが生じ、X線のエネルギーがわずかにシフトしてしまうことがあり、 XANES での酸化状態解析等に影響を与える可能性があります。ここでは、I1、I2 イオンチャンバを用いて試料 と同時に測定したリファレンスのデータを用いて、エネルギーシフトを修正する方法を説明します。

Align data

- 「あいち SR 硬 X 線 XAFS ビームライン(BL5S1, BL11S2)で測定したデータの開き方」に従って、測定データと 同時にリファレンスのデータを読み込む。
- (2) 読み込んだリファレンスデータは、実際のデータの下に一字下げて「Ref ○○」と表示される。 ここでは、リファレンスとして Cu-foil を用いている。

* athena	1	Save	A U I	Cu-foil
Main wind	ow		~	Cu2O Ref Cu2O
Current g	roup: Cu-foil	Datatype: xmu	Freeze	CuO Ref CuO
File	¥¥BL5S1A¥Stars¥Data¥Staff¥BL5S1_Caribration_Study	¥171205_Cu-foil-std	pos-60s-Cu	
Flement	29: Copper \checkmark Edge K \checkmark Energy shift	0 Importance	e 1	

(3) 整列したいデータの Ref に全てチェックを入れ、リストから「Align data」を選択する。

* athena	Save A U I	Cu-foil
Main window	~	Ref Cu2O
Main window		CuO
Calibrate data		Ref CuO
Align data		
Rebin data		
Deglitch and truncate data		
Smooth data		

(4) Standard に、整列の基準となるデータを選択し、Align marked group ボタンをクリックして整列する。 ここでは、I0, I1 イオンチャンバで測定した Cu-foil を基準として選択している。

右側のデータリストで選択されて青色になっているデータは Standard に選択できないので注意する。

File	Group	Energy	Mark	Plot	Freeze	Merge	Monitor	Help							
* at	hena								Save	A U I	Cu-foil				
Alia	n data														
Ang	liuata									Ť	Ref CL	20			
			Alic	aning	Ref CuO						Ref ()	n			
			Star	ndard	Cu fail										
					Cu-roll			~							
			Plot	tas	smoothe	d deriv(E)	\sim							
			Fit a	as.	smoothe	d deriv(E)	~							
			Shift by	0	e\ F	Unc Replot	ertainty 🛛								
			Au	to alig	n		uign mark	ea grou	ps						
			-5		+5										
			-1		+1							Ŀ	D		ka
			-0.5		+0.5						-	•		Ч	×ч
			0.1		.01						E	ĸ		к	9
			-0.1		+0.1						Plottin	ig k-we	ights		
											$\bigcirc 0$	01	0 2	○ 3	⊖kw

あいちシンクロトロン光センター BL5S1 担当者

(5) (4)の時、プロットウィンドウに Standard とデータリストで選択されて青色になっているデータを一階微分したグラフが表示されている。データ整列は、Ref の1 階微分の頂点の位置 ⊕を Standard の1 階微分の頂点の位置 ⊕に合わせるように行われる。(明らかに1 階微分のグラフ形状が異なるデータは整列できない)

(6) Ref が整列されるのに連動して、Ref と紐付けされた実際のデータのエネルギーシフトも修正される。

💽 Athena [XAS data processing]	_	\times
File Group Energy Mark Plot Freeze Merge Monitor Help		
* athena Save A U I Cu-foil		
Main window 🗸 🗹 Ref Cu2O		
Current group: CuO □ treeze □ CuO □ Ref CuO		
File ¥¥BL5S1A¥Stars¥Data¥Staff¥BL5S1_Caribration_Study¥171019_CuO-pellet-stdpos-60:		
Flement 29: Copper V Edge K V Energy shift -0.052 Importance 1		
💽 Athena [XAS data processing]	_	×
File Group Energy Mark Plot Freeze Merge Monitor Help		
* athena Save A U I Cu-foil		
Main window VRef Cu20		
Current group: Ref CuO		
File C:¥Users¥K_TAKAHAMA(NUSR)¥AppData¥Roaming¥demeter¥stash¥171019_CuO-pe		
Flement 20 Conner Edge V Energy shift _0.058 Importance 1		

※Energy shift の青色の欄に手動入力してシフトさせることも可能

- (7) 一度整列が終われば Ref は不要になるため、削除しても構わない。
- (8) 稀に自動での整列が上手くいかないことがある。その時は1階微分のグラフを見ながら手動の+/-ボタンで値 を変化させ、データの整列を行う。

Shift by	0 eV	Uncertainty 0		
Auto	align	Align marked groups		
-5	+5			
-1	+1		l	E k R q kq
-0.5	+0.5			E k R q
-0.1	+0.1			Plotting k-weights ○0 ○1 ●2 ○3 ○kw

未知スペクトルを線形結合フィッティングにより解析する方法

Linear Combination Fitting

Athena には、標準物質のスペクトルを用いて線形結合フィッティングを行うことで、未知試料中に含まれている物 質の混合比を算出する機能があります。ここでは例として、Cu2O と CuO を任意の割合で混合した試料についての 混合比率を算出しています。

- (1) 標準物質のスペクトルと、未知スペクトルの測定データを読み込む。
- (2) 適切にバックグラウンド除去し、規格化する。
- (3) 「Main Window」から、Linear Combination Fitting を選択する。

1 Athena [XAS data processing]	-	\times
File Group Energy Mark Plot Freeze Merge Monitor Help		
* <untitled></untitled>	t	
Main window	Cu2O(50%).dat	
Main window	Cu2O(75%).dat	
Calibrate data	Cu2O(25%).dat	
Align data	u2O(X%).dat	
Rebin data		
Deglitch and truncate data		
Smooth data		
Convolute and add noise to data		
Deconvolute data		
Self-absorption correction		
Multi-electron excitation removal		
Copy series		
Data summation		
Linear combination fitting		
Principle components analysis		
Peak fitting		

- (4) (i) Standars に Cu2O と CuO を選択する。
 - (ii) フィッティングを行いたいデータにチェックを入れる。
 - (iii) Actions \mathcal{O} [Fit marked group] \mathcal{E} \mathcal{O}] \mathcal{O}] \mathcal

🕢 A	Athena [XAS data proce	ssing]							-		×
File	Group Energy Mar	rk Plot Freeze	Merge M	onitor	Help						
* <u< td=""><td>untitled></td><td></td><td></td><td></td><td>Save</td><td>A U</td><td>Т</td><td>Cu2O.dat</td><td>(ii)</td><td></td><td></td></u<>	untitled>				Save	A U	Т	Cu2O.dat	(ii)		
Line	ar combination fitting						~	Cu(50%)Cu20	D(50%).dat		
Fit ra	ange: -20 💿 ndards Fit results, Co	to 30 mbinatorics Sec	Fitting onorr	space mμ(E) () deriv μ(E)	Οχ(k)		Cu(25%)Cu2C	D(75%).dat D(25%).dat (X%).dat		
	Standards (1)	Weigh	ht EO	Fit E0	Required						
1:	Cu2O.dat	~ 0.50	0 0				^				
2:	Cu2O.dat	~ 0.50	0 0								
3:	None	~ 0	0								
4:	None	~ 0	0								
5:	None	~ 0	0								
6:	None	~ 0	0								
[Options Plot weighted compo Plot residual	onents	Actions	Fi	t this group			E k	R k F	q	kq q
	✓ All weights between ✓ Force weights to sum Add a linear term after All standards share a	0 and 1 n to 1 er E0 n E0		Fit al Fit n Save fi	narked groups	s ata	3	Plotting k-w	eights @ 2)3 ()	kw
	Add noise 0	to data		Plot	data and sum			Plot in energy			~
	Information content	0		Plot da	ata and sum in	R			Out	.)	
	Combinatorics			Make	e group from f	it		Backgrou	nd line	-/	
	Use at most 4	, standards		User	marked group	\$		Derivative	e line ed No De	rmalized rivative	
	Keset			Docus	pent section: I	CE	. 1	2nd deriv	ative 🛄 2ni	d derivati	ve
				bocan	inter section in E					000	
		Return t	o main windo	W				Emin -200	Emax	800	
Fit all	marked groups using th	e current fitting i	model.								

(5) フィッティングによって得られた比率が表示される。今回は Cu2O と CuO を 1:1 の比率で混合したサンプルについてフィッティングを行っており、結果も 1:1 になっていることが分かる。

🛐 Athena [XAS data processing]			_	×
File Group Energy Mark Plot Freeze Mi	erge Monitor	Help		
* <untitled></untitled>		Save A U I	🗹 Cu2O.dat	
			CuO.dat	
Linear combination fitting		~	🗹 Cu(50%)Cu2O(50%).dat	
	Fitting space		Cu(25%)Cu2O(75%).dat	
Fit range: 20 O to 30	5.		Cu(75%)Cu2O(25%).dat	
	💿 norm μ(E)	🔾 deriv μ(Ε) 🔾 χ(k)	Cu(X%)Cu2O(X%).dat	
Standards Fit results Combinatorics Sequence	e			
Data R-factor Red. chi-sq	CuO.dat	Cu2O.dat		
Cu2O.dat 0 0	0.000(0.000)	1.000(0.000)		
CuO.dat 0 0	1.000(0.000)	0.000(0.000)		
Cu(50%)&Cu2O 0.0004834 7.71e-005	0.500(0.004)	0.500(0.004)		
		/		

スペクトルを積み上げ形式で表示する方法

Stack Plot

Athena でスペクトルをプロットする時、初期設定では下図左のような重ね合わせ形式で表示されますが、見づらい場合には下図右のような積み上げ形式(Stack Plot)で表示させることができます。

(1) 右下にあるリストから「Stack plots」を選択する。

Standard None Energy-dependent normalization	E k R q kq
Forward Fourier transform parameters	с к к ч
k-range 3.000 o to 15.036 o dk 1 window Hanning V	Plotting k-weights
arbitrary k-weight 0.5 phase correction	
Backward Fourier transform parameters	Title learned size le file
R-range 1 I to 3 I dR 0,0 window Hanning V	Plot in energy Plot in k-space
Plotting parameters	Plot in R-space
	Plot in q-space
Plot multiplier y-axis offset	Stack plots
	Plotting styles
	Shrink

(2) Initial value (基準にする Y 軸の値)と Increment(各スペクトルの Y 軸間隔の値)を入力し、

「Apply to marked」をクリックする。ここでは、Initial value を 0、Increment を 3.5 としている。 チェックを入れていないデータには反映されないので注意する。

Standard None Chergy-dependent normalization	E k R q kq
Forward Fourier transform parameters	E k R q
k-range 3,000 (a) to 15,036 (b) dk 1 window Hanning ~ arbitrary k-weight 0,5 (c) phase correction	Plotting k-weights ○ 0 ○ 1
Backward Fourier transform parameters	Stack plots
Hanning V	the set of marked groups
Plotting parameters	Initial value o
Plot multiplier 1 y-axis offset 0	Increment 3,5
	Apply to marked

(3) スペクトルを表示すると、Cu-foil を基準にして、Y 軸方向に+3.5 の間隔で積み上げられた Stack plot になって いることがわかる。

 (4) 各スペクトルのY軸位置を等間隔ではなく個別に手動で設定したいときには、「Plotting parameter」のy-axis offset に任意の値を入力する。

(5) Stack plot を Excel 等でのグラフ作成のために数値データとして出力したい場合は、右下のメニューの「Save next plot to a file」をクリックしてから E, k, R, q 等のいずれかのボタンを押すと、プロットしたスペクトルを.dat 形式 の数値データとして保存できる。

※File→Save marked group as...では、Stack plot 等の処理が反映されていないデータしか保存できない。

Standard N	one	~	Energy-depend	ent normalizat	tion		E k	R	q	kq
Forward Fo	ourier transfor	m parameters					E	k	R	9
k-range 3.0	00 💿 to	14.945 💿 dk 👔	window	Hanning	\sim		Plotting k	-weights		
arbitrary k-w	eight 0.5	phase c	orrection				00 0	1 @ 2	03 O k	w
Backward F	ourier transf	orm parameters				Titl	e, legend, s	single file		~
R-range 1	o to	3 💿 dR {).0 window	W Hanning	\sim	Ti	tle for mark	ked group p	olot	
DI-44'						S	tack plot			
Plotting pai		12				Le	egend locat	tion		
Plot multipl	ier _	y-axis offset				C	top left	🖲 top	right	
						C	bottom le	ft Obot	tom right	
						□ : Ma	Suppress le rked plot p	gend 🔲 🕻 ause (ms)	Dutside ປ	
							Sa	ve next plo	t to a file	
invert all mark	s					Luun				i
Save plot	t to a file									~
ave plu		C 、 ビフクトップ 、	DATA				DATAD	ゆま		_
€ → *	т <mark>і э</mark> р	L > 7X9F97 >	DATA			~ C	DATAU	(9; 99)		مر •
整理 ▼	新しいフォルダ・	-							•	?
📌 クイック	ウ アクセス			検索条件	⊧に一致する	項目はありませ	њ.			
🝊 OneD	Prive									
💻 PC										
🕳 BL5S1	TKHM (D:)									
🔿 ネット	フーク									
••• ///=/x:	911-J									
-	(II. 20 Jun)									
ファイ	「ル名(N): plot.	dat								~
ファイルの	D 檀頬(T): Data	(*.dat)								~
ヘ フォルダー	の非表示						保存	字(S)	キャンセル	
										.:
D2	- : ×	1 fr 7								*
02				I	0		1	1	IZ.	
1 k	D Cu-foil	CU20 CU0	E	F	G	Н	I	J	ĸ	٦Ē
2	0 0	3.5	7							_
3 5.00E-0	02 9.32E-04	3.500121 6.9965	522							
4 0	0.1 3.58E-03	3.50062 6.9859	943							
5 0.3	15 7.73E-03	3.501703 6.9680)48 8	~ 1		m	$\sim \sim$			-
6 0										
	0.2 1.31E-02	3.503573 6.9426	523 6	\vee	\smile	V~ ~~				
7 0.2	0.2 1.31E-02 25 1.96E-02	3.503573 6.9426 3.506434 6.9094	523 6 152 4		\sim	\sim				
7 0.1 8 0	0.2 1.31E-02 25 1.96E-02 0.3 2.75E-02	3.503573 6.9426 3.506434 6.9094 3.510213 6.8710	523 6 152 4 053 ₂	\sim	\sim					
7 0.1 8 0 9 0.3	0.2 1.31E-02 25 1.96E-02 0.3 2.75E-02 35 3.70E-02	3.503573 6.9426 3.506434 6.9094 3.510213 6.8710 3.514764 6.8307	523 6 152 4 053 ₂ 764 0			$\frac{1}{\sqrt{2}}$		~		
7 0.1 8 00 9 0.3 10 0	 1.31E-02 1.96E-02 2.75E-02 3.70E-02 4.78E-02 	3.503573 6.9426 3.506434 6.9094 3.510213 6.8710 3.514764 6.8307 3.520013 6.7875	323 6 152 4 053 2 764 0 0561 0					14	16 18	
7 0.1 8 0 9 0.3 10 0 11 0.4	0.2 1.31E-02 25 1.96E-02 0.3 2.75E-02 35 3.70E-02 0.4 4.78E-02 45 5.90E-02	3.503573 6.9426 3.506434 6.9094 3.510213 6.8710 3.514764 6.8307 3.520013 6.7875 3.524506 6.7435	523 6 152 4 053 2 764 0 561 0 959 -2					14	16 18	
7 0.2 8 0 9 0.3 10 0 11 0.4 12 0	0.2 1.31E-02 25 1.96E-02 0.3 2.75E-02 35 3.70E-02 0.4 4.78E-02 45 5.90E-02 0.5 7.04E-02	3.503573 6.9426 3.506434 6.9094 3.510213 6.8710 3.514764 6.8307 3.520013 6.7875 3.524506 6.7435 3.527391 6.7004	523 6 152 4 053 2 764 0 0561 0 0559 -2 1559 -4					14	16 18	
7 0.1 8 00 9 0.3 10 00 11 0.4 12 00 13 0.5	1.31E-02 1.96E-02 0.3 2.75E-02 35 3.70E-02 0.4 4.78E-02 45 5.90E-02 0.5 7.04E-02 55 8.10E-02	3.503573 6.9426 3.506434 6.9094 3.510213 6.8710 3.510213 6.8710 3.520013 6.7875 3.524506 6.7433 3.527391 6.7004 3.527296 6.6584	523 6 152 4 153 2 764 0 0559 -2 1559 -4 137 -6					14	16 18	
7 0.1 8 0 9 0.3 10 0 11 0.4 12 0 13 0.4 14 0	1.31E-02 1.31E-02 1.96E-02 3.2.75E-02 3.3.70E-02 0.4 4.78E-02 4.5 5.90E-02 0.5 7.04E-02 55 8.10E-02 0.6 8.99E-02	3.503573 6.9426 3.506434 6.9094 3.510213 6.8716 3.514764 6.8307 3.520013 6.7875 3.524506 6.7435 3.527391 6.7004 3.527296 6.6584 3.520712 6.6196	523 6 152 4 053 2 764 0 0561 0 0559 -2 159 -4 137 -6 581 -2			foilCu20		14	16 18	

データを様々な形式でセーブする方法

Athena では、Athena 上での解析のためのプロジェクトファイル形式や、EXCEL 等でグラフ作成可能なテキスト 形式等の様々な形式でデータを出力することができます。ここでは、Athena で使用可能なセーブの方法について 説明します。

Save Project

Athena 上での解析のためのプロジェクトファイル形式でデータを保存する方法で、出力先のフォルダには下図の ような「.prj」拡張子のファイルが出力されます。

このファイルには、作業を保存した時点で設定されていた EO や規格化、フーリエ変換のパラメータ等が反映された状態でのデータが保存されています。また、.dat ファイルから読み込んだデータも同時に保存されているため、元の.dat ファイルが無くてもプロジェクトファイル単体でデータを読み込むことが可能です。

(1) $\lceil File \rfloor b \in \lceil Save project \rfloor b \neq 0$

	Ð	Athena [XAS data processing] — 🗆 🗙
Import data Recent files	Ctrl+o	Group Energy Mark Plot Freeze Merge Monitor Help hena Save A U I MATAQ1 DATAQ2 DATAQ2
Save project Save project as Save marked groups as a project	Ctrl+s	ent group: DATA01 Detatype::xmu Freeze C:¥Users¥K_TAKAHAMA(NUSR)¥Desktop¥Cu.prj, 1
Backwards compatible project files Project format	>	ment 29: Copper VEdge K Energy shift 0 Importance 1 nalization and background removal parameters
Save current group as Save marked groups as Save each marked group as Export	>	B378120 Image: Constraint of the state of
Refresh project Clear project name		3 1.0 • k-weight 2 • Spline clamps
Close Exit	Ctrl+w Ctrl+q	erange in k 0 0 to 17.036 0 high Strong v

- (2) 現在開いている全てのデータについて、元データと同じディレクトリに「athena.prj」というデフォルト名 でプロジェクトファイルが出力される。
- (3) ファイル名やディレクトリを任意で設定したいときには、「Save project as...」をクリックして保存する。
 「Save marked groups as a project...」は、データウィンドウでチェックされているデータのみをプロジェクトファイルとして出力する。

「Backward compatible project file」にチェックを入れると、旧 ver.の Athena と互換性のあるプロジェクトファイルを出力する。

		Athena
	File	Grou
Import data Ctr	l+o	hena
Recent files	>	h wind
Save project Ctr	rl+s	ant a
Save project as		entg
Save marked groups as a project		
Backwards compatible project files		ment
Project format	>	naliza

壁道 - 新しいたり/- 非 クイック アクセス 企 Onschive 後期長さ ■ RC50、TDHMI(D)	更新日時 Fに一乗する項目はありませ	■ 種類 ん。	≣≣ • 94%
# クイック アクセス 像 OncOnve 使用点 / ● PC ■ ELSSI_TOHM (D)	更新日時 特に一致する項目はありませ	陸照 ん。	サイズ
PC			
 ➡ ネットワーク ■▲ ホームグループ 			
< 77/1/6(N): [attenap]			

あいちシンクロトロン光センター BL5S1 担当者

(4) 保存したプロジェクトファイルを Athena で読み込むと、下図のようなウィンドウが現れる。「Select all」を クリックして全てのデータを選択、若しくは必要なデータをクリックして選択し、「Import selected data」を クリックするとデータを開くことができる。

Athena: Import from Athena p	project file — 🗆 🗙
DATA01 DATA02 DATA03	Data group title lines
	Plot as (a) $\mu(E)$ $\chi(k)$ (b) $\chi(R)$ $\chi(q)$ (c) $Re[\chi(R)]$ $Re[\chi(q)]$ (c) $Im[\chi(R)]$ $Im[\chi(q)]$
	Select all Select none Invert Select every 2 th starting at # 1
	Select matching Match case
	Import selected data
	Cancel

Save Group As...

EXCEL 等でグラフ作成可能なテキスト形式でデータを出力する方法について説明します。

(1) $\lceil \text{File}
ightarrow \lceil \text{Save current group as...}
ightarrow \boxed{\begin{subarray}{c} & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$

			Ð	thena [XAS data processing]					
			File	Group	D Energy	Mark	Plot	Free	ze
	Import data	Ctrl	+0	hena					
	Recent files		>) windo	wc				
	Save project	Ctrl	+5	ent group: DATA01					
	Save marked groups as a project				C:¥Users¥k	_такан	AMA(I	NUSR	.)¥D
	Backwards compatible project files			nent	29: Copper		~ E	dge	к
	Project format		>	naliza	ntion and	backgr	ound	remo	ova
μ(Ε)	Save current group as		>	8978.1	20)			
norm(E)	Save marked groups as		>	edae ra	ange	-150.000	1 0	l to [- 20
χ(k)	Save each marked group as		>			-150.000			- 50
χ(R)	Export		>	malizat	ion range	150.000	\odot	to	100
χ(q)	Refresh project Clear project name			3	1.0	• •	k-	weigh	nt [
	Close	Ctrl+	+w	he rang	je in k	0	G) to	l
	Exit	Ctrl	+q	he rang	je in E	0	0) to	[
			Char.						

(2) 表示されたμ(E)、norm(E)、χ(k)、χ(R)、χ(q)から保存したい形式を選ぶ。内訳は以下の通りである。μ(E):規格化されていないμx
 norm(E):設定したパラメータに基づいて規格化したμx
 χ(k):設定したパラメータに基づいて抽出した EXAFS 振動
 χ(R): 設定したパラメータに基づいて行ったフーリエ変換から得られた動径構造関数データ
 χ(q):設定したパラメータに基づいて行った逆フーリエ変換データ
 それぞれ、.xmu、.norm、.chik、.chir、.chiq 拡張子のテキストデータとして出力される。

🚺 Save μ(E) data		×
← → • ↑ 📙 > P	C > デスクトップ > data v o dataの検索	م
整理 ▼ 新しいフォルダ・	-	⊾ - ?
🖈 クイック アクセス	検索条件に一致する項目はありません。	
PC		
🕳 BL5S1_TKHM (D:)		
● ホラムグループ		
ファイル名(N): DATA	A01.xmu	~
ファイルの種類(T): μ(E)	data (*.xmu)	~
ヘ フォルダーの非表示	保存(5) キャンセル

(3) 出力されたデータをワードパッド等で開くと、下図のようにスペースで区切られた数値の列として記録さ れていることが分かる。

🞯 DATAD1.xmu - TeraPad			- 0 ×
ファイル(F) 編集(E) 検索(S) 表示(V) ウインドウ(W) 5	ソ−ル(T) ヘルプ(H)		
🗋 🗃 🗳 🗶 🖿 💼 🗠 🗠 🔎 🦻	3		
0	0.000 1105.754+ 0.24+ 0.000 17.036+		. 1 , 1150, 1 , 1160, 1 , 1170, 1 , 1180, . ,
28 # Athena.kweight: 29 # Athena.window:	hanning↓		
30 # Athena.phase_correction: 31 # Athena.k_range: 32 # Athena.dk: 33 # Athena.r_range:	no4 3.000 15.0364 14 1.34		
34 # Athena.dr: 35 # Athena.window: 36 # Athena.plot_multiplier:	0.0↓ hanning↓ 1↓		
37 # Athena.y_offset: 38 # ///4 39 #	01		
33 #	pre_cdge cost_cdge 0.91717282 0.9031087 0.91717282 0.9031087 0.91717282 0.9031087 0.91717282 0.9031087 0.91717182 0.9031087 0.91717182 0.903087 0.91140818 0.9025848 0.91140819 0.9025849 0.91108284 0.90256302 0.91108284 0.9024049 0.91108284 0.9024049 0.9105786 0.90128323 0.91057868 0.90189237 0.91057868 0.90189237 0.9109786 0.90189237 0.9109786 0.90189237 0.9109786 0.90189237 0.9109786 0.90189237 0.9109786 0.90189237 0.9109785 0.90189237 0.90187459 0.9018925 0.90187459 0.9018248 0.9068266 0.9017849 0.9068266 0.9017849 0.90682506 0.9017849 0.90682506 0.9017849 0.90682506 <td< th=""><th>der sec i0 chiei chiei chiei 2.6514244 0.100000 0.42016970E-04 25208752. 0.0000 2.6514244 0.11268E-04 0.510975E-07 25208752. 0.0000 2.6514244 0.11268E-04 0.510975E-07 25208752. 0.0000 2.6514244 0.120575E-07 0.010975E-07 25208752. 0.0000 2.6501467 -0.5204405E-07 0.010975E-07 25208752. 0.0000 2.6501475 -0.52027555E-07 0.3297573E-07 25295552. 0.0000 2.6444914 -0.38724702E-03 0.3457010E-03 25252552. 0.0000 2.6444914 -0.38724102E-03 0.3457010E-03 25274852. 0.0000 2.6444914 -0.45671128E-03 0.4570750E-03 25279852. 0.0000 2.64449167 -0.456370128E-03 0.4570708E-03 25274852. 0.0000 2.6447250 -0.4563701E-03 0.1575888E-02 2526452. 0.0000 2.6447650 -0.48637078E-03 0.147077088E-02 25264452. 0.00</th><th>000 - 000 - 00</th></td<>	der sec i0 chiei chiei chiei 2.6514244 0.100000 0.42016970E-04 25208752. 0.0000 2.6514244 0.11268E-04 0.510975E-07 25208752. 0.0000 2.6514244 0.11268E-04 0.510975E-07 25208752. 0.0000 2.6514244 0.120575E-07 0.010975E-07 25208752. 0.0000 2.6501467 -0.5204405E-07 0.010975E-07 25208752. 0.0000 2.6501475 -0.52027555E-07 0.3297573E-07 25295552. 0.0000 2.6444914 -0.38724702E-03 0.3457010E-03 25252552. 0.0000 2.6444914 -0.38724102E-03 0.3457010E-03 25274852. 0.0000 2.6444914 -0.45671128E-03 0.4570750E-03 25279852. 0.0000 2.64449167 -0.456370128E-03 0.4570708E-03 25274852. 0.0000 2.6447250 -0.4563701E-03 0.1575888E-02 2526452. 0.0000 2.6447650 -0.48637078E-03 0.147077088E-02 25264452. 0.00	000 - 000 - 00
66 8691.2040 0.9088781 67 8691.4770 0.90877866 68 8691.7430 0.90877866 68 8691.7430 0.90873374	0.9088761 0.9005068 0.90887632 0.90055566 0.90877866 0.90045172 0.90853374 0.90035103	2.642504 -0.21555116-03.01349766-04 2512522.0.000 2.642504 -0.21555116-03.01349766-04 25125452.0.000 2.6422016 -0.65557686-03 -0.65551128E-03 2510852.0.000 2.6422077 -0.55557688E-03 -0.65551128E-03 2510852.0.000	0001 0001
		10/2	

(4) EXCEL にデータをコピー&ペーストして、データタブの「区切り位置指定ウィザード」を使用してスペース の位置でデータ列を区切る。

77	イル ホー	- 4 -	挿入 べ	-ジレイアウ	ット 数:	式 デー	ター校開	表示	11896 Ç	実行したい	作業を入力し	てください														<u>ج</u>	共有
 データ	xess We VX-Z 2I	し テキジ リ ファイ いのデー	スト その化 ハレデータン タの取り込み	の 既 -ス - お	 済の 新 鉄統 クコ		フェリの表示 テーブルから 最近使ったソー: 副変換	マ すべ ス 更新	2 接続 こ 目 プロパテ こ 見 リンクの1 接続	<mark>ک</mark> ج ≣⊈ ک	ズ A 2 並べ替え フイ がべ替え	▼ 500 Ng- 10 再込 ▼詳細	7 画用 田設定	C Et初1位	2 2 酒 フラッシュ フィル	■+ ■複 の削除;	データの 入力規則・ データッ	● 統合 -	■ = リレーションシッ	していていていています。 ブデータモデル の管理	What-If	分析 予測 シート ジート	グルージ	プグループ / 解除 - アウトライン		2→ ソルバー データ分析 分析	
						- 011			1000							10										22.01	
A1		¥ 1	×	√ Jx	e		xmu	DKg	pre	e_edge	post_e	age a	er	sec		10	chie										~
	A		В	С	D		E	F	G	Н	1	J		К	L	1	M	Ν	0	Р	Q	f	R	S	Т	U	1
1	е	×m	ıu	bkg	pr	e_edge	post	_edge	der	sec	iO	cl	nie														
2	8684.4	530	0.9117	282	0.9117	1282	0.903106	578	2.6517566	0.00	00000	0.420169	70E-04	2520	08752.	0.000	00000										
3	8684.7	350	0.9117	.282	0.9117	1282	0.903003	82	2.6514244	0.11	428616E-C	4 -0.5610	9755E	-07 2	25208752	. 0.	000000	0									
4	8685.0	080	0.9117	.905	0.9117	1905	0.902900)48	2.6510909	-0.30	579816E-0	07 -0.110	73678E	-02 2	25221352	2. 0.	.000000	0									
5	8685.2	740	0.9117	.280	0.9117	1280	0.902799	79	2.6507661	-0.58	544265E-0	03 -0.983	09783E	-03 2	25241352	2. 0.	.000000	0									
6	8685.5	390	0.91140	818	0.9114	0818	0.902699	48	2.6504425	-0.52	205553E-0	03 0.3796	5733E	-03 2	25256552	2. 0.	.0000000	0									
1	8685.8)50	0.9114	559	0.9114	3559	0.902598	\$79	2.6501177	-0.38	384461E-0	03 -0.392	25/22E	-03 1	25265952	2. 0.	.0000000	0									
8	8686.0	080	0.91120	1896	0.9112	0896	0.902503	102	2.6498088	-0.72	563702E-0	0.3241	1/601E	-04 2	25255252	. 0.	0000000	0									
9	8080.3	180	0.9110	534	0.9110	1501	0.902404	100	2.6494914	-0.36	0721438E-0	0.345	0108E	-03 2	25274952	. 0.	.0000000	0									
10	0000.0	540	0.9110	104	0.9110	7404	0.902303	101	2.0491000	-0.34	519620E-0	2 0 4507	75055	-02 0	20202302	2. 0.	000000	0									
12	2627.1	200	0.9107	404	0.9107	5142	0.902203	160	2.6485017	-0.46	910126E-0	12 0.2203	1505E	-03 2	25205052	. 0.	0000000	0									
12	8687.4	170	0.9106	1798	0.9106	0798	0.902091	37	2.6481625	-0.23	390955E-(13 -0.2050	10011F	-03 2	25279252		0000000	0									
14	8687.6	300	0.9105	295	0.9105	7295	0.901880	03	2 6478295	-0.46	623601E-0	3 -0.105	58963F	-02 1	25264053	2 0	000000	0									
15	8687.9	160	0.9103	668	0.9103	5668	0.901788	34	2.6475050	-0.89	303765E-0	0.8729	4440E	-04 2	25256352	2. 0.	.0000000	0									
16	8688.2	120	0.9100	786	0.9100	9786	0.901687	65	2.6471806	-0.41	979537E-0	03 0.1447	1732E	-02 2	25252052	. 0.	.0000000	0									
17	8688.4	780	0.9101	335	0.9101	3335	0.901586	596	2.6468562	-0.12	314150E-0	03 -0.770	46665E	-04 2	25244252	2. 0.	.000000	0									
18	8688.7	380	0.9100	309	0.9100	3309	0.901488	54	2.6465392	-0.46	032192E-0	03 -0.926	70322E	-03 2	25220852	2. 0.	.000000	0									
19	8689.0	040	0.9098	122	0.9098	9122	0.901387	85	2.6462149	-0.61	058739E-0	03 0.6594	3155E	-04 2	25220752	. 0.	.000000	0									
20	8689.2	760	0.90970	459	0.9097	0459	0.901284	88	2.6458833	-0.42	484450E-0	03 0.1465	5859E	-03 2	25215052	. 0.	.000000	0									
21	8689.5	120	0.9096	5266	0.9096	6266	0.901184	19	2.6455590	-0.53	173887E-0	3 -0.260	41212E	-03 2	25197852	2. 0.	.000000	0									
22	8689.8	220	0.9094	426	0.9094	1426	0.901078	20	2.6452178	-0.56	702952E-0	03 0.3201	1976E	-03 2	25183152	. 0.	000000	0									
23	8690.0	380	0.9093	306	0.9093	5306	0.900977	51	2.6448936	-0.35	695348E-0	03 0.6708	35746E	-03 2	25190052	. 0.	.000000	0									
	-)	Shee	t1 (-													14										Þ
準備	完了 🏥																				データの個数	: 4448		I 🗉 -		+	100%

(1) データの列と行が区切られ、EXCEL上でグラフの作成が可能なデータとなる。

יד	イル ホーム	5 挿入	ページレイアウ	ト 数式	データ 校	閒 表示	開発 🖓	実行したい作用	業を入力してく	ださい											Я#	栯
ー Ac データ	Cess Web M-スクエリ	デキスト そ ファイル データ 部データの取り込	の他の 既行 クソース - 接	すの 新しい 約 クエリー	 ウエリの表え テーブルから 最近使った 取得と変換 	示 う シース 更新	 ・ ・	کا لگ ≣⊈	 (、クリア 、うのののでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、のでは、ので	区切り位置	レンテッシュ フィル	■ 重複 データ の削除 入力規 デー	D 統合 調 - 9 ツール	■ <mark>/</mark> □ ■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	していたい しんし データ モデル の管理	What-If 分析	デ 予測 か シート	「ループグループ バループグループ 化、解除、 アウトライン		?、ソルバー データ分析 分析	^
A1		- : ×	√ fx	е																		~
	A	В	С	D	F	F	G	н	1		к	1	м	N	0	Р	0	R	S	Т	L U	
1	e	xmu	bkg	pre edge	post edge	der	sec	iO	chie .	,	I.	-			0		×	I.	0		0	-
2	8684,463	0.911713	0.911713	0.903107	2.651757	0	4.2E-05	25208752	0													
3	8684.735	0.911713	0.911713	0.903004	2.651424	1.14E-05	-5.6E-08	25208752	0													
4	8685.008	0.911719	0.911719	0.9029	2.651091	-3.1E-08	-0.00111	25221352	0													
5	8685.274	0.911713	0.911713	0.9028	2.650766	-0.00059	-0.00098	25241352	0													
6	8685.539	0.911408	0.911408	0.902699	2.650443	-0.00052	0.00038	25256552	0													
7	8685.805	0.911436	0.911436	0.902599	2.650118	-0.00038	-0.00039	25265952	0													
8	8686.058	0.911209	0.911209	0.902503	2.649809	-0.00073	3.24E-05	25255252	0													
9	8686.318	0.911063	0.911063	0.902405	2.649491	-0.00037	0.000346	25274952	0													
10	8686.584	0.911016	0.911016	0.902304	2.649167	-0.00054	-0.00022	25282952	0													
11	8686.85	0.910774	0.910774	0.902203	2.648842	-0.00049	0.000451	25265652	0													
12	8687.129	0.910751	0.910751	0.902098	2.648502	-0.0003	0.000289	25279252	0													
13	8687.407	0.910608	0.910608	0.901992	2.648163	-0.00032	-0.00031	25279852	0													
14	8687.68	0.910573	0.910573	0.901889	2.64783	-0.00047	-0.00106	25264052	0													
15	8687.946	0.910357	0.910357	0.901788	2.647505	-0.00089	8.73E-05	25256352	0													
16	8688.212	0.910098	0.910098	0.901688	2.647181	-0.00042	0.001447	25252052	0													
17	8688.478	0.910133	0.910133	0.901587	2.646856	-0.00012	-7.7E-05	25244252	0													
18	8688.738	0.910033	0.910033	0.901489	2.646539	-0.00046	-0.00093	25220852	0													
19	8689.004	0.909891	0.909891	0.901388	2.646215	-0.00061	6.59E-05	25220752	0													
20	8689.276	0.909705	0.909705	0.901285	2.645883	-0.00042	0.000147	25215052	0													
21	8689.542	0.909663	0.909663	0.901184	2.645559	-0.00053	-0.00026	25197852	0													
22	8689.822	0.909414	0.909414	0.901078	2.645218	-0.00057	0.00032	25183152	0													
23	99901088	v.909353 Sheet1	0.303323	0.900978	2.044894	-0.00036	0.000071	20190052	0												_	
進(部	院了 問	A POINT	Ŧ											348.20468	7 データの4回参	\$:4448 @	H: 41571466	5.24			+ 1	00%
- apr 278		_	_	_	_	_	_	_	_				178.5		- / ////周览				un 2			0070

あいちシンクロトロン光センター BL5S1 担当者

```
    (2) 「Save marked groups as...」を使用すると、データウィンドウでチェックした複数のデータを1つのテキスト形式ファイルとして出力できる。「Save current group as...」よりも細かく出力データの内容を選ぶことができる。
```

deriv(...):カッコ内のデータについての1階微分データを出力する

second(...): カッコ内のデータについての2階微分データを出力する

χ(k)~k³χ(k): plotting k-weights が無し~k³の各場合についての EXAFS 振動を出力する

|χ(...)|: 複素数の絶対値についてのデータを出力する

Re[χ(...)]: 複素数の実部についてのデータを出力する

Im[χ(...)] :複素数の虚部についてのデータを出力する

Pha[χ(...)] : Phase のデータを出力する

	Save current group as	>
μ(Ε)	Save marked groups as	>
norm(E)	Save each marked group as	>
deriv(µ(E))	Export	>
deriv(norm(E)) second(µ(E)) second(norm(E))	Refresh project Clear project name	:
- //)	Close	Ctrl+w
χ(k)	Exit	Ctrl+q
$k\chi(k)$ $k^2\chi(k)$		Stan
κ~χ(κ)		Forw
[χ(R)]		k-rar
Re[χ(R)] Im[χ(R)]		arbit
Pha[χ(R)]		Back
b(a)		R-rai
Re[χ(q)]		Plott
Im[χ(q)] Pha[χ(q)]		Plot

(3) 「Save each marked groups as...」を使用すると、データウィンドウでチェックした複数のデータごとに別々 のテキスト形式データとして出力できる。

	Save current group as	>
	Save marked groups as	>
μ(Ε)	Save each marked group as	>
norm(E)	Export	>
χ(k) χ(R)	Refresh project Clear project name	
χια	Close	Ctrl+w

特定のデータを選択してチェックを付け外しする方法

(1) 最上段のメニュー欄で「Mark」→「Mark by regexp」を押す。

(4) チェックを外したい場合は、「Mark」→「Unmark by regexp」を使用する。

Flement 29: Copper

C:¥Users¥K_TAKAHAMA(NUSR)¥Desktop¥171206-Cu-foil-2.dat

✓ Edge K ✓ Energy shift 0

Importance 1

E0 の様々な設定方法

XAFS 解析を行う上で、吸収端における E0 の決定とそれに基づく光子エネルギー[eV]の波数 k[Å⁻¹]への変換は重要な作業です。E0 の決め方に絶対的な定義はありませんが、吸収端の立ち上がりの変曲点、吸収端前後のエッジ ステップの中点、ホワイトラインの位置等の様々な方法があり、解析する一連のデータでは決め方を統一するこ とが重要です。ここでは、Athena 上で E0 を設定するための方法について説明します。

 「Energy」→「Set E0 for all groups to...」をクリックし、Ifeffit's default、the tabulated value、a fraction of the edge step、the zero of the second derivative、the peak of the white line の中から設定したいものを選択すると、全ての データの E0 が選択したものに基づいて設定される。内容については以下で解説する。

(2) 「Set E0 for marked groups to...」を使用すると、データウィンドウでチェックを入れたデータについて E0 が 設定される。

Ifeffit's default

Athena 上でデフォルトの設定となっている方法です。データを読み込んだ時に特に操作をしない場合、この方法 によって E0 が設定されます。E0 は、下図のように吸収端の立ち上がりの変曲点(スペクトルの1 階微分が極大 となる点)に基づいて決定されます。XAFS の基礎と応用(ISBN: 9784061532953)の p77 では、この方法によって E0 を決めることが多いと紹介されています。

the tabulated value

吸収端の位置から割り出された元素の種類について、文献で報告されている吸収端エネルギーを E0 として設定 する方法です。

文献

- 1. J. A. Bearden, "X-Ray Wavelengths," Rev. Mod. Phys. 39, 78 (1967).
- 2. M. O. Krause and J. H. Oliver, "Natural Widths of Atomic K and L Levels, Ka X-Ray Lines and Several KLL Auger Lines," J. Phys. Chem. Ref. Data 8, 329 (1979).

Current group: DATA01		Datatype: xmu	Freeze
File C:¥Users¥K_TAKAHAMA	(NUSR)¥Desktop¥2018-04	-25_DESKTOP¥Cu.prj, 1	
Flemert 29: Copper 🗸 🗸	Edge ĸ 🗸 Energy st	nift 0 Importance	1
Normalization and background	removal parameters		
E0 8979 💿	Normalizati	ion order 🔿 1 🔿 2 🤅	3
Pre-edge range -150.000) to -30.000 💿 🗹	Flatten normalized data	
Normalization range 150.000	to 1005.803 💽 Edg	ge step 1.5066942	fix

a fraction of edge step

エッジステップの中点の位置にあるエネルギーを E0 とする方法です。

the zero of the second derivative

スペクトルの2階微分が0と交わる点に基づいてE0を設定する方法です。

the peak of the white line

ホワイトラインのピーク位置に基づいて E0 を設定する方法です。Athena では、スペクトルの1 階微分について、 極大になる位置より高エネルギー側において0と交わる最初の点をホワイトラインと定義しています。

スペクトル上でホワイトライン位置を調べる方法

XANES について議論する際に、ホワイトラインのピーク位置は重要な情報となります。ここでは、スペクトルから実際に目で見て読み取る以外に、ホワイトラインのピーク位置を調べる方法について説明します。

Find white line position

(1) データウィンドウでホワイトライン位置を調べたいデータを選択し、「Energy」→「Find white line position...」
 →「for this group」をクリックする。

(2) スペクトルがプロットされ、下図のようにホワイトライン位置が茶色の線として表示される。 Athena では、スペクトルの1階微分について、極大になる位置より高エネルギー側において0と交わる最初 の点をホワイトラインと定義している。スペクトルの形状によって解析者の考えているホワイトライン位置 しい思える体質でたる可能性がたストン、パドロエ見て確認上る。

あいちシンクロトロン光センター BL5S1 担当者

(3) 「for all groups」を使用すると全てのデータについて、「for marked groups」を使用するとデータウィンドウで チェックを入れたデータについてのホワイトライン位置が、下図のように数値として出力される。

White line po	sitions		_	×
‡ group	white line position			^
# ====================================				
"DATA01	8980.847			
"DATA03"	8996.583			
<				>
				_
	Sa	ive		
	CI	ose		

(4) Save ボタンを押すと、テキスト形式で結果を保存することができる。

Save contents		×
← → ~ ↑ 📙 > PC	C > デスクトップ > data 🗸 🗸 👌 dataの検	م چ
整理 ▼ 新しいフォルダー		⊾ - ?
> 🖈 クイック アクセス	検索条件に一致する項目はありません。	
> 🝊 OneDrive		
> 💻 PC		
> 👝 BL5S1_TKHM (D:)		
> 🥩 ネットワーク		
> 🔩 ホームグループ		
ファイル名(N): conte	ents.txt	~
ファイルの種類(T): Text fi	iles (*.txt)	~
ヘ フォルダーの非表示	保存	F(S) キャンセル

EXAFS 解析が非アクティブになっている時の対処方法

Athena でデータを読み込んだ時に、稀に下図のように EXAFS 解析関連のパラメータを入力する領域が非アクティブな状態になっていることがあります。この時に、EXAFS 解析に関係する k ボタン、R ボタン、q ボタンを押しても反応がありません。

File C:¥Users¥K_TAKAHAMA(NUSR)¥Desktop¥2018-04-25_DESKTOP¥Cu.prj, 1 Flement 29: Copper Edge K Energy shift 0 Importance 1 Normalization and background removal parameters		
Flement 29: Copper \sim Edge K \sim Energy shift 0 Importance 1		
Normalization and background removal narameters		
normanzadon ana vacegrouna removal parameters		
E0 8977.967 0 Normalization order 0 1 0 2 0 3		
Pre-edge range -150.000 💿 to -30.000 💿 🗹 Flatten normalized data		
Normalization range 150.000 0 to 1005.803 0 Edge step 1.5255549 fix		
Rbkg 1.0 • k-weight 2 • Spline clamps		
Spline range in k 0 0 to 17.036 0 None V		
Spline range in E 0 to 1105.7537 in high Strong v		
Standard None Energy-dependent normalization	E k R q	kq
Forward Fourier transform parameters	E k R	q
k-range 2 000 0 to 15 036 0 dk 1 window Happing	Plotting k-weights	
arbitrary koweight of	○0 ○1 ●2 ○3 ○) kw
and dary k-weight 0.5	Dist in komme	
Backward Fourier transform parameters	Plot in K-space	~
R-range 1 o to 3 o dR 0.0 window Hanning ~	$\chi(E)$ $\chi(E)$	
	Background	

この状態の時にウィンドウの一番下にあるステータスバーを見ると、下図のように「xanes data cannot be plotted in k.」若しくは「xanes data cannot be plotted in R.」、「xanes data cannot be plotted in q.」などと表示されています。

	kmin 0 kmax 1	5
xanes data cannot be plotted in k.		

この表示は、データが Athena 上では XANES のデータとして読み込まれており、EXAFS 領域が無いものとして 認識されていることを示しています。この状態では EXAFS 解析を行うことができないため、データタイプを変 更する必要があります。ここでは、2 つの方法について説明します。

Change Data Type

(1) データウィンドウ上でデータを右クリックし、「Change data type」を選択する。

	_		×	
Help				
Save A U I	Rename current g	roup		Shift+Ctrl+I Shift+Ctrl+v
Datatype: xanes Freeze	Change data type	K		Shire carry
DESKTOP¥Cu.prj, 1	Set all groups' val Set marked group	ues to th s' values	e current to the cu	irrent

(2) 「Change datatype for...」の current group、「Change datatype for...」のμ(E)にチェックを入れ、OK ボタンを押 すと、選択したデータのデータタイプが EXAFS 解析可能なμ(E)に変更される。

Athena: Change datatype –	\times									
Change datatype for	Change datatype for									
Current group O all marked groups O all groups										
Change datatype to										
ω μ(E)										
OK Cancel										

(3) all marked groups を使用すると、データウィンドウでチェックを入れたデータのデータタイプが変更される。
 all groups を使用すると、全てのデータのデータタイプが変更される。

データの再読み込み

- (4) 解析したいデータを Athena に再度インポートする。
- (5) 下図のデータ読み込みウィンドウで、Data type がµ(E)になっていることを確認して OK ボタンを押す。

Athena: Column selectio	n						_	×
Select range	Clear numerator	Pause plotting	# 9809	AichiSR BLS	581			^
			# 171003_Cu-	foil 17.10.0	03 17:1	6 - 17.10.03	17:18	
energy_re	equested energy_attained	time ið i 16	# Ring: 1	.2 GeV 300.	8 mA -	301.0 mA		
Energy 🔘	۲	0 0 0 0	# Mono: S	Si(111)	D= 3.	13553 A In	itial angle= i	12.8
Numerator			# BL5S1 4	ax input ((2)	Repetition=	1 Points=	444
Denominator			# Param file	: DUMMYNAME.	prm	energy axis (2) Block =	
			# Block	Init-Eng fi	inal-Er	ns Step/eV	Time/s	
			# 1	8684.36 1	10084.3	6 0.31	0.02	
			# ORTEC(0)	NDCH = 4				
			# Angle(c)	Angle(o)	time/s	: 1	2	8
			# Mode	0	0	1	2	2
			I Dffset	0	0	10725.200 13	087.200 13661.	.600
🗹 Natural log 🛛 Inv	ert Multiplicative const	ant 1	#			·		
			# energy_requ	Jested energ	sy_atta	Uned time i	U II	
	Save each c	hannel as its own group	8684.437	8684.366	0.02	246//5/5.000	11128218.000	24
Data type (µ(E) V	Epergy upits eV	✓ Replot	0004.710	0004.000	0.02	246//0/0.000	11123213.000	24
u(E)	Energy units 2		0004.373	0004.304	0.02	24667375.000	1112/010.000	24
Energy zc xapes	aned		9695 520	9695 429	0.02	24037375.000	11199519 000	2/
norm(E)			8685 786	8685 682	0.02	24692075 000	11134313 000	24
$\mu(E) = \ln(chi(k))$) / (zcylk.i1)))		8686.058	8685 942	0.02	24688075 000	11133713_000	24
xmu.dat			8686.331	8686.207	0.02	24684575.000	11133813.000	24
Preprocess Rebin	Reference		8686.597	8686.486	0.02	24677375.000	11130413.000	24
			8686.869	8686.759	0.02	24660475.000	11127213.000	24
Import reference cr	nannei		8687.141	8687.038	0.02	24654575.000	11123513.000	24
00.0101/	veguested energy attained	a ti na in ti n	8687.407	8687.304	0.02	24646275.000	11120413.000	24
energy_	requested energy_attaine		8687.680	8687.576	0.02	24635375.000	11116413.000	24
Numerator			8687.952	8687.836	0.02	24625875.000	11114013.000	24
Denominator			8688.218	8688.102	0.02	24608375.000	11108713.000	24
			8688.491	8688.361	0.02	24607175.000	11109313.000	24
			8688.764	8688.634	0.02	24598075.000	11105113.000	24
Replot reference	🗹 Natural log 🛛 🗹 Sam	e element	8689.030	8688.900	0.02	24588475.000	11101813.000	24
			8689.302	8689.172	0.02	24572275.000	11093613.000	24
			8689.575	8689.445	0.02	24560475.000	11093513.000	24 🗸
ОК	Cancel	About	<	0000 310	0 00	04540035 000	11005510 000	>

(6) EXAFS 解析可能なデータタイプ $\mu(E)$ のデータとして Athena に読み込まれる。

EXAFS 振動の抽出が上手くいっていない時の対処方法

Athena でデータを読み込んだ時、edge step が非常に小さいと下のように EXAFS 振動の抽出が上手くいかないことが あります。

対処方法

(1) Spline clamps high のリストをクリックする。

W Athena [XAS data processing]	_		×
File Group Energy Mark Plot Freeze Merge Monitor Help			
* FeO-low-concentration-jump-study Save A U I	ge step=0.01		
Main window 🗸			
Current group: FeO edge step=0.01			
File C:¥Users¥K_TAKAHAMA(NUSR)¥Desktop¥FeO-low-concentration-jump-study.prj, 3			
Flement 26: Iron VEdge K VEnergy shift 0 Importance 1			
Normalization and background removal parameters			
E0 7120.379 0 Normalization order 0 1 0 2 0 3			
Pre-edge range -150.000 ⊙ to -30.000 ⊙ ✓ Flatten normalized data			
Normalization range 150.000 0 to 991.625 0 Edge step 0.0096589 fix			
Rbkg 1.0 + k-weight 2 - Spline clamps			
Spline range in k 0 0 to 16.927 0 low None ~			
Spline range in E 0 0 to 1091.6493 0 high Strong			
Standard None Energy-dependent nd Slight	k R	q	kq
E E	k	R	q
k-range 1000 Sto 14 027 Odk 1 window u Bioid			
	01 82	0, 0	lou .

(2) 「Strong」から「None」に変更する。

Rbkg 1.0	← k-weight 2	Spline clamps	
Spline range in k	0 0 to 16.92	7 O Iow None ~	
Spline range in E	0 0 to 1091.	6493 O high None ~	
Standard None	V Ene	ergy-dependent normalization	k R q kq

(3) kボタンをクリックし、EXAFS 振動を表示させて確認する。

EXAFS 振動が上手くいっていない理由

Athena では EXAFS 振動を抽出するバックグラウンドを設定する際にスプライン関数を使用していますが、関数の末 端では前後のデータが存在しないためスプライン関数が歪んでしまうことがあります。この問題を解決するために、 末端部でスプライン関数が μ(E) データに沿うようにする「Spline clamps」処理が行われています。

しかし、edge step が小さく EXAFS 振動も小さい時に Spline clamps 処理でスプライン関数を $\mu(E)$ データに沿わせて しまうと、かえってスプライン関数が歪んでしまうことがあります。このような時には、前項で説明したように None (Spline clamps 処理をしない)を選択すると、EXAFS 振動が見えてくる場合があります。

Spline clamps high が None の場合

蛍光法データを読み込んだ際にスペクトルが歪んでいる時の対処法

蛍光法で測定したデータを読み込んだ時、測定自体は正しく行われたはずなのに、表示されたスペクトルが下の ZnO-FL-NG のように歪んでしまうことがあります。このような時はデータの読み込み手順が誤っていることが疑われます。

対処方法

「Athena のインストール方法及びデータの開き方」を見ながら、正しい手順でデータを読み込みなおす。

Athena: Column selection Select range Clear numerator Pause plotting Ħ 9809 AichiSR BL5S1 ^ Ħ. ZnO-50ppm-FL 18.08.01 16:02 - 18.08.01 16:53 :ed energy_attained time i0 i1 6 7 8 9 10 11 12 13 14 15 16 17 ±. Ring : 1.2 GeV 0.0 mA -0.0 mA D= 3.13553 A \bigcirc # Mono : Si(111) Initial angle= 11.7 ± BL5S1 Extra mode (3) Repetition= 0 Points= 58 energy axis (2) H. Param file : DUMMYNAME.prm Block = Ħ Block Init-Eng final-Eng Step/eV Time/s 9363.61 9623.61 6.50 1.00 9623.61 9713.61 0.30 1.00 Ħ 2 9713.61 10163.61 2.50 8.00 3 # Λ 10163.61 10463.61 6.00 10.00 < 5 10463.61 10763.61 20.00 1.00 Ħ CAMAC(1) NDCH = 8 # Natural log Invert Multiplicative constant 1 Angle(c) Angle(o) 2 time/s 1 \$ Save each channel as its own group Mode 0 0 - 2 2 0 Offset 0 0.000 0.000 0.000 Data type µ(E) Energy units eV 🗸 🗸 Replot Ħ # energy_requested energy_attained time i0 - i 1 Energy iyiav.energy_attained 9363.687 9363.585 1.00 6363.000 7023.000 9370.187 9370.133 6232.000 6785.000 1.00 μ(E) (iyiav.i0+iyiav.i1+iyiav.6+iyiav.7+iyiav.8+iyiav.9+iyiav.10) / (iyiav.1 9376.687 9376.707 5976.000 6703.000 1.00 9383.187 5811.000 9383.213 1.00 6411.000 Preprocess Rebin Reference 9389.691 9389.688 1.00 5757.000 6288.000 9396.188 9396.178 1.00 5468.000 5875.000 Import reference channel 9402.687 9402.736 5426.000 1.00 5951.000 9409.188 9409.187 1.00 5137.000 5678.000 energy_requested energy_attained time i0 i1 6 7 8 9415.687 9415.687 1.00 5087.000 5565.000 Numerator 9422.187 9422.188 1.00 4824.000 5414.000 Denominator 9428.688 9428.706 1.00 4688.000 5318.000 < 1.00 9435.188 9435.172 4619.000 5080.000 9441.688 9441.723 1.00 4434.000 4868.000 Replot reference 🗹 Natural log 🛛 🗹 Same element 9448.188 9448.230 1.00 4418.000 4842.000 9454.688 9454.661 4359.000 4674.000 1.00 9461.188 9461.186 4103.000 4486.000 1.00 ΟК Cancel About ٤Î

スペクトルが歪んで表示されてしまう理由

蛍光法のデータを読み込む際には、Numerator (分子)に蛍光X線のシグナル、Denominator (分母)に IO イオンチャンバ のシグナルとなるようにチェックを入れ、Natural log にはチェックを入れないようにします。誤って Natural log にチ ェックを入れてデータを読み込んでしまうと、本来不必要な対数化操作が入ってしまうためスペクトルが歪んでしま います。

:ed energy_attained time i0 i1 6 7 8 9 10 11 12 13 14 15 16 17 ・ ・ ・	# Ring: 1.2 GeV 0.0 mA - 0.0 mA # Mono: Si(111) D= 3.13553 A Initial angle= 11.7 # BL5S1 Extra mode (3) Repetition= 0 Points= 58 # Param file: DUMMYNAME.prm energy axis (2) Block = # Block Init-Eng final-Eng Step/eV Time/s # 1 9363.61 9623.61 6.50 1.00 # 2 9623.61 9713.61 0.30 1.00 # 3 9713.61 10163.61 2.50 8.00 # 4 10163.61 10463.61 6.00 10.00 # 5 10463.61 10763.61 20.00 1.00 # CAMAC(1) NDCH = 8 8 10.00 1.00
	# Angle(c) Angle(o) time/s 1 2 2 # Mode 0 0 3 3 5
Data type W(E) Several units eV Several Benlot	# Offset 0 0 0.000 0.000 0.000
Energy iyiav.energy_attained μ(Ε) (iyiav.i0+iyiav.i1+iyiav.6+iyiav.7+iyiav.8+iyiav.9+iyiav.10) / (iyiav.11)	# energy_requested energy_attained time i0 i1 9363.687 9363.585 1.00 6363.000 7023.000 9370.187 9370.133 1.00 6232.000 6785.000 9376.687 9376.707 1.00 5976.000 6703.000
red energy attained time i0 i1 6 7 8 9 10 11 12 13 14 15 16 17	# 210 3000001 12 10:00.01 10:02 10:00.01 10:00
 ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	# King: 1.2 GeV 0.0 mA - 0.0 mA # Mono: Si(111) D= 3.13553 A Initial angle= 11.7 # BL5S1 Extra mode (3) Repetition= 0 Points= 58 # Param file: DUMMYNAME.prm energy axis (2) Block = # Block Init-Eng final-Eng Step/eV Time/s # 1 9363.61 9623.61 6.50 1.00 # 2 9623.61 9713.61 0.30 1.00 # 3 9713.61 10163.61 2.50 8.00
< >	# 5 10463.61 10763.61 20.00 1.00
Natural log	# CAMAC(1) NDCH = 8 # Angle(c) Angle(o) time/s 1 2 8
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	# Mode 0 0 3 3 5 # Offset 0 0.000 0.000 0.000 #
Energy iviav.energy attained	# energy_requested energy_attained time i0 i1 9363 687 9363 585 1 00 6363 000 7023 000
μ(E) In(abs((iyiav.i0+iyiav.i1+iyiav.6+iyiav.7+iyiav.8+iyiav.9+iyiav.10) /	9370.187 9370.133 1.00 6232.000 6785.000 9376.687 9376.707 1.00 5976.000 6703.000

誤った手順で読み込んだデータは、下のように正しい手順で読み込んだデータと比べて Edge step がけた違いに大き い特徴があるので、読み込んだ蛍光法のスペクトルがおかしいと感じたら Edge step を確認してください。

Ionitor Help	1onitor Help		
Save A U I ZnO-FL-OK	Save A U I ZnO-FL-OK		
~	~		
Datatype: xmu Freeze	Datatype: xmu		
-FL.dat	-FL.dat		
y shift 0 Importance 1	ay shift 0 Importance 1		
ers	iers		
ization order 🔿 1 🔿 2 💿 3	ization order 🔿 1 🔿 2 💿 3		
Flatten normalized data	I Flatten normalized data		
Edge step 0.0035719	Edge step 1.9520611		

更新履歴

- 2018/04/05 本稿作成
- 2018/04/20 スペクトルを積み上げ形式で表示する方法 追記
- 2018/04/25 データの選択時に役立つ操作方法…等 複数項目追記
- 2018/04/26 光電子のエネルギー原点 E0 の様々な設定方法…等 複数項目追記
- 2018/07/11 目次の項目分け
- 2018/07/25 EXAFS 振動の抽出が上手くいっていない時の対処方法 追記
- 2018/08/27 蛍光法データを読み込んだ際にスペクトルが歪んでいる時の対処法 追記